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Abstract

We give a representation–theoretic interpretation of recent discovered coupled soliton equations
using vertex operators construction of affinization of not simple but quadratic Lie algebras. In this
setup we are able to obtain new integrable hierarchies coupled to each Drinfeld–Sokolov ofA, B, C,
D hierarchies and to construct their soliton solutions.
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1. Introduction

One of the most important achievement of the representations of the affine Lie algebras
and their groups is surely the Lie theoretical explanation of the Hirota[7] bilinear approach
to the soliton equations. This beautiful piece of mathematics is the result of an important
sequence of relevant papers, which starts in 1981 with the works of Sato[21,23], where the
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link between the soliton equations and the infinite dimensional groups has been brought
to the light for the first time. Some years later Date, Jimbo, Kashiwara and Miwa[3]
gave a construction of the Kadomtsev–Petviashvili (KP) and Korteweg–de Vries (KdV)
hierarchies in terms of the vertex operators representating the affine lie algebraa∞ and
ŝl2, respectively, while Segal and Wilson[24] have examined the same equation from
a geometrical point of view. Finally Drinfeld, Sokolov[4], Kac Peterson and Wakimoto
[10,13,12]have extended this theory to all affine Lie algebras. These results have suggested
to find a similar interpretation for others hierarchies of soliton equations, for example in a
recent work[2] Billig has obtained this goal for the sine-Gordon.

The main aim of the present paper is to contribute to the research in this direction. Our
starting point is the following “coupled KdV equations” which appears in many very recent
papers of different authors like Hirota et al.[8], Sakovich[20], Kakei [14]:

vt + 6vvx + vxxx = 0
wt + 6vwx + wxxx = 0.

(1.1)

The corresponding bilinear Hirota form of these equations (and actually of many others
closely related, among them “coupled KP equations”[20]) is namely known[8] together
with some soliton solutions, but, as far as we know, it is still missing their broader Lie-
theoretic interpretation. In this paper we shall show how these equations are a particular
case of a very wide class of “coupled soliton equations” which can be obtained using the
vertex operator realization of a new class of infinite dimensional Lie algebras. These latter
algebras are the affinization of not simple finite dimensional Lie algebras, which still posses
a symmetric non degenerated ad-invariant bilinear form. Therefore, in our long journey
towards our task we shall be enforced to develop a vertex operator algebras theory for a
class of Lie algebras which are not the affinization of semisimple ones. Nevertheless our
construction will allow us to produce coupled soliton equations corresponding to each of
the Drinfeld–Sokolov and the AKP BKP CKP DKP hierarchies, although for sake of brevity
only the case of the coupled AKP BKP and their reductions to opportune generalizations of
the affine Lie algebrasA(1)

1 A
(1)
2 ,A(2)

1 andB(1)
2 are explicitly examinated in the paper. These

reductions in turn provide a clear explanation of how the coupled KP equations become the
coupled KdV ones by neglecting the dependency from one particular variable. Finally, the
action on the space of representation of the corresponding infinite dimensional groups will
provide, exactly as in the usual case, a class of multi-soliton solutions.

The paper is organized as follows: in the second section we shall describe a class of finite
dimensional Lie algebras known in the literature as polynomial Lie algebras[15,19]which,
roughly speaking, can be regarded as direct sum of semisimple Lie algebras endowed with
a non canonical Lie bracket. We shall show that these Lie algebras can be constructed in
completely different ways: namely as particular finite dimensional quotients of an infinite
dimensional algebra and as a Wigner contraction of a direct sum of finite dimensional
semisimple Lie algebras, or finally as tensor product between a finite dimensional Lie
algebrag and a nilpotent commutative ring. Further we shall show how on these Lie algebras
is defined a class of symmetric non degenerated ad-invariant bilinear forms if a such bilinear
form exits ong. In the next section it will be shown how these latter bilinear forms can be used
to affinize those in general non simple Lie algebras. Then in Section4 their vertex operator
algebras construction is presented. Once this result is achieved we can tackle the problem
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to construct the corresponding generalized Hirota bilinear equation and their multisoliton
solution in term ofτ-functions. This will be done in the fifth and last section where further
the case of the coupled AKP BKP and their reduction to Lie algebras generalizing the
algebrasA(1)

1 , A(1)
2 , A(2)

1 , andB(1)
2 are presented into details.

2. The polynomial Lie algebras

The aim of this first section is to present a class of finite dimensional Lie algebras (called
in what follows polynomial Lie algebras to keep the name usually used in the literature, see
for example[15] and[19]) which are going to play a crucial role in the whole paper.

Definition 2.1. For any integer numbern letg(n) denote the Lie algebra given by the tensor
product

g⊗ C
(n) (2.1)

between the Lie algebrag and the commutative ringC(n) = C[λ]/(λ)n+1.

This algebra may be identified with the Lie algebra of polynomial maps fromC
(n)

in g, hence an elementX(λ) in g(λ) can be viewed as the mappingX : C → g, X(λ) =∑n
k=0Xkλ

k, whereXk ∈ g. In this setting the Lie bracket of two elements ing(λ),X(λ) =∑n
k=0Xkλ

k andY (λ) = ∑n
k=0 Ykλ

k can be written explicitly as

[X(λ), Y (λ)] =
n∑
k=0

 k∑
j=0

[Xj, Yk−j]g

 λk (2.2)

where [·, ·]g is the Lie bracket defined ong.
Observe that ifn > 0 theng(n) fails to be semisimple, becauseg⊗ λn is a non trivial

ideal. Nevertheless ifg admits on it a symmetric ad-invariant non-degenerated bilinear form
(i.e., if g is a quadratic algebra) then roughly speaking this bilinear form is inherited by the
whole Lie algebrag(n) it holds indeed:

Theorem 2.2. Suppose that on g is defined symmetric ad-invariant non-degenerated bilin-
ear form 〈·, ·〉g then for any set of complex numbers A = {aj}j=0,...,n, the bilinear form

g(n) × g(n) → C

(X(λ), Y (λ)) �→ 〈X(λ), Y (λ)〉(n)
A = ∑n

j=0 aj
∑j
i=0〈Xi, Yj−i〉g.

(2.3)

is a symmetric bilinear, ad-invariant and, if an 	= 0, not degenerate form.

Proof. The fact that(2.3) is a bilinear symmetric form follows immediately from the
definition. Let us therefore first prove that the bilinear form(2.3) is ad-invariant. We have
to prove that for any choice of elementsX(λ) = ∑n

k=0Xkλ
k, Y (λ) = ∑n

j=0 Yjλ
j, Z(λ) =∑n

i=0Ziλ
i in g(n) it holds that

〈[X(λ), Y (λ)], Z(λ)〉(n)
A = 〈X(λ), [Y (λ), Z(λ)]〉(n)

A . (2.4)
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Now

〈[X(λ), Y (λ)], Z(λ)〉(n)
A =

n∑
j=0

aj

j∑
k=0

〈[X, Y ]k, Zj−k〉g

=
n∑
j=0

aj

j∑
k=0

〈
k∑
l=0

[Xl, Yk−l], Zj−k

〉
g

(2.5)

while

〈X(λ), [Y (λ), Z(λ)]〉(n)
A =

n∑
j=0

aj

j∑
k=0

〈Xk, [Y,Z]j−k〉g

=
n∑
j=0

aj

j∑
k=0

〈
Xk,

j−k∑
l=0

[Yl, Zj−k−l]

〉
g

. (2.6)

To see that(2.4)holds if suffices to observe that both(2.5) and (2.6)can be written as

〈[X(λ), Y (λ)], Z(λ)〉(n)
A = ∑n

j=0 aj
∑
l1+l2+l3=j〈[Xl1, Yl2], Zl3〉g

〈X(λ), [Y (λ), Z(λ)]〉(n)
A = ∑n

j=0 aj
∑
l1+l2+l3=j〈Xl1, [Yl2, Zl3]〉g

and that the Eq.(2.4) immediately follows using the ad-invariance of the bilinear form
〈·, ·〉g. It remains to show that it is non-degenerated. We have to check that ifX(λ) ∈ g(n) is

such that〈X(λ), Y (λ)〉(n)
A = 0 for everyY (λ) ∈ g(n) thenX(λ) = 0. Indeed sinceX(λ) has

the formX(λ) = ∑n
j=0Xjλ

j its inner product with an element of the formYn(λ) = Ynλ
n

will be:

〈X(λ), Yn(λ)〉(n)
A = an〈X0, Yn〉g (2.7)

and sinceYn can be chosen arbitrarily ing, 〈·, ·〉g is non degenerated on it andan 	= 0,

〈X(λ), Yn(λ)〉(n)
A = 0 implies thatX0 = 0. Then by pairingX(λ) with an element of the

typeYn−1(λ) = Yn−1λ
n−1 we get:

〈X(λ), Yn−1(λ)〉(n)
A = an〈X1, Yn−1〉g

and then again〈X(λ), Yn−1(λ)〉(n)
A = 0 impliesX1 = 0. Repeatingn times this argument

we obtain step by step that each coefficientXi is zero, proving the proposition. �

Remark 2.3. If we denote byω the matrix representation of the bilinear form〈·, ·〉g defined

on g then it is immediately to show that the bilinear form〈·, ·〉(n)
A defined ong(n) has the
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matrix form:

Ω
(n)
A =



a0ω a1ω a2ω · · · an−1ω anω

a1ω a2ω · · · anω 0
a2ω · · · 0 0

...
...

an−1ω anω 0 · · · 0 0
anω 0 0 · · · 0 0


. (2.8)

The just proved proposition shows that the polynomial Lie algebrag(n) wheng is semisim-
ple, are non trivial (non abelian or semisimple) examples of quadratic Lie algebras i.e., finite
dimensional Lie algebras which possess a symmetric ad-invariant, non degenerated bilin-
ear form[16,17]. The very definition of the Lie algebrag(n) suggests a way to construct
it in a form better suited for the purposes we have in mind. More precisely the following
proposition allows us to obtain a matrix realization ofg(n).

Proposition 2.4. The map ρ given by

ρ : C
(n)(Λ) −→ End(C(n+1))

ρ(ci ⊗Λi) �→ ciλ
i (2.9)

where Λ is the (n+ 1) × (n+ 1) matrix given by

Λ =
n∑
i=0

ei+1,i (2.10)

and

(eij)kr =
{

1 if i = j, k = r

0 otherwise

is a ring homomorphism.

Now using together the definition ofg(n) algebra andProposition 2.4we get a matrix
representation ofg(k).

Theorem 2.5. IfΠ : g −→ Aut(Cm) for some m is a true representation of g then the map

Π̃ : g(n) �→ Aut(Cm(n+1))

given by

Π̃(X0, . . . , Xn) =
n∑
i=0

XiΛ
i =



Π(X0) 0 0 0 0 0
Π(X1) Π(X0) 0 0 0 0

...
...

...
... 0 0

...
...

...
...

...
...

Π(Xn−1)
... · · · · · · Π(X0) 0

Π(Xn) Π(Xn−1) · · · · · · Π(X1) Π(X0)


(2.11)

is a true representation of g(n).
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Proof. Since we have constructed a representation ofC(λn) we have a representation of
g⊗ C(λn) given by:

Π ⊗ ρ : g⊗ C(λn) −→ End(Cm) ⊗ End(Cn+1) ∼= End(Cm(n+1))

To bring it ong(n) directly we have only to use the isomorphismΦ : g(k) ∼= g⊗ C(λk):

Π̃ = Π ◦ ρ ◦Φ : g(k) −→ Aut(Cm(n+1)) �

Previously in this section we have shown that ifg possesses an ad-invariant bilinear non
degenerate form this gives rise a ad-invariant bilinear non degenerate form ong(n). It is
therefore natural to wonder if this latter form has a natural expression in our matrix repre-
sentation. This is actually the case. We have indeed for instance whenak = 1 for all k that:

〈(X0, . . . , Xn), (Y0, . . . , Yn)〉(n) = tr(Π̃(X0, . . . , Xn)Π̃(Y0, . . . , Yn)C
(n)) (2.12)

whereC(n) is them(n+ 1) ×m(n+ 1) matrix:

C(n) =



1
n+1Im

1
n
Im · · · 1

3Im
1
2Im Im

0 1
n+1Im

1
n
Im · · · 1

3Im
1
2Im

0 0
...

...
... 1

3Im

...
... 0

...
...

...

...
...

... 0 1
n+1Im

1
n
Im

0 0 0 · · · 0 1
n+1Im


i.e. C(n)

p,p+k = 1
n+1−k Im, whereIm denotes them×m identity matrix,p = 0, . . . , n− k

andk = 0, . . . , n whileC(n)
pq = 0 if q < p.

3. The affine Lie algebras

In the previous section we have constructed a class of non semisimple Lie algebras which
posses an ad-invariant non degenerate symmetric bilinear form. This their peculiar property
suggests to investigate their affinization. Our construction will differ only in few details
from that usually considered in the literature (see for example Kac[10]).

Let us consider a polynomial Lie algebrag(n) whereg is semisimple and let denote by
L(g(n)) the corresponding loop algebra:

L(g(n)) = g(n) ⊗C C(t, t−1) (3.1)

whereC(t, t−1) is the algebra of Laurent polynomials in a complex variablet. Remember
that on it is defined an infinite complex Lie algebra bracket:
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[X⊗ p, Y ⊗ q] = [X, Y ] ⊗ pq (p, q ∈ C(t, t−1);X, Y ∈ g(n)).

Then our “generalized affine Lie algebra” denoted byL̂(g(n)) will be obtained by adding to
L(g(n)) n+ 1 “central charges” and a “derivation”d. More precisely the Lie algebraL(g(n))
is the vector space

L̂(g(n)) = L(g(n)) ⊕
n∑
i=0

⊕Cci ⊕ Cd (3.2)

with Lie bracket defined as[
(X0, . . . , Xn) ⊗ tp ⊕

(
n∑
i=0

νici ⊕ µd

)
, (Y0, . . . , Yn) ⊗ tq ⊕

(
n∑
i=0

ν1
i ci ⊕ µ1d

)]
= [(X0, . . . , Xn), (Y0, . . . , Yn)] ⊗ tp+q

+ (µq(Y0, . . . , Yn) ⊗ tq − µ1p(X0, . . . , Xn) ⊗ tp)

+pδp,−q
n∑
i=0

i∑
j=0

aj〈Xi−j, Yj〉gci. (3.3)

Observe that the elementd acts as derivation on̂L(g(n)) and that the Jacobi identity for this
Lie bracket is granted from the ad-invariance of the bilinear form(2.3) on g(n), therefore
the elementsci i = 1, . . . , n play the role ofn+ 1 linear independent central charges.
Moreover it is a standard fact that this ad-invariant bilinear form can be extended to a
symmetric ad-invariant bilinear form〈·, ·〉(n)t

A on the whole Lie algebrâL(g(n)) by setting

〈X(t), Y (t)〉(n)t
A = Res

(〈
dX(t)

dt , Y (t)
〉(n)

A

)
∀X(t), Y (t) ∈ L(g(n))

〈d, d〉(n)t
A = 0

〈ci, d〉(n)t
A = 1 〈ci, cj〉(n)t

A = 0 i, j = 0, . . . , n,

(3.4)

where the Res is the linear functional ofC(t, t−1) defined by the properties Res(t−1) = 1;
Res(dpdt = 0). For our purposes the most important case is when our finite dimensional Lie
algebrag is just a quadratic algebra but actually a complex semisimple Lie algebra. We want
indeed in this case construct a vertex operator representation of the Lie algebraL̂(g(n)). The
first step in this direction[9,10] is to consider a Chevalley basis ofg adapted to the Cartan
decomposition of our semisimple complex Lie algebrag

g = h⊕
∑
α∈∆

⊕gα, gα = {X ∈ g|[H,X] = α(H)X ∀H ∈ h} (3.5)

whereh is an once for ever fixed Cartan subalgebra ofg, and∆ is the corresponding the
root system. More precisely ifΠ = {α1, . . . , αr} is a set of simple roots, then a Chevalley
basis is the set

{Hα1, . . . , Hαr } ∪ {Xα}α∈∆ (3.6)
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where the elements{Hα1, . . . , Hαr } are the dual of the simple roots and therefore spanh
and for anyα in ∆Xα is a non trivial elementXα in gα such that

Hαi = [Xαi,X−αi ] [H,Xα] = α(H)Xα ∀H ∈ h, i = 1, . . . , r.

This basis in turn allows us to define a basis for the whole Lie algebrag(n) and its affinization
L̂(g(n)). They will be namely respectively forg(n)

{Hk
α1
, . . . , Hk

αr
} ∪ {Xkα}α∈∆ k = 0, . . . , n (3.7)

and forL̂(g(n))
{Hk

α1
⊗ tm1, . . . , Hk

αr
⊗ tmr } ∪ {Xkα ⊗ tmα}α∈∆ k = 0, . . . , n,mi ∈ Z

c0, . . . , cn
d.

(3.8)

The corresponding Lie bracket are forg(n)

[Hk
αi
,H

j
αs ] = 0

[Hk
αi
, X

j
α] =

{
α(Hk

αi
)Xk+jα if j + k ≤ n

0 otherwise

[Xkα,X
j
β] =

{
N(α, β)Xk+jα+β if j + k ≤ nandα+ β ∈ ∆
0 otherwise

(3.9)

with opportune integer numbersN(α, β). While for the Lie affine algebrâL(g(n)) they are

[Hk
αi

⊗ tmi , H
j
αs ⊗ tms ] = 〈Hk

αi
,H

j
αs〉(n)
A δ−mi,msck+j

[Hk
αi

⊗ tmi , X
j
α ⊗ tmα ] =

{
α(Hαi )X

k+j
α ⊗ tmi+mα if j + k ≤ n

0 otherwise

[Xkα ⊗ tmα,X
j
β ⊗ tmβ ] =


N(α, β)Xk+jα+β ⊗ tmα+mβ

+ 〈Xkα,Xjβ〉(n)
A δmα,−mβcj+k if j + k ≤ nandα

+β ∈ ∆
0 otherwise

[d,X⊗ tm] = mXk ⊗ tm ∀X ∈ g(n)

[ci, X] = 0 ∀X ∈ L̂(g(n)), j = 0, . . . , n.

(3.10)

The importance of this basis in what follows is due to the fact that it allows us to define
some generating series through which our searched vertex operators are constructed. These
generating series are defined by the formulas: ([10,6]):

Hk
αi

(z) = ∑
n∈ZHk

αi
⊗ tnz−1−n

Xkαi (z) = ∑
n∈ZXkαi ⊗ tnz−1−n

∂z = d
dz

(3.11)

wherez is a formal variable. Using these formal operators is immediate to prove
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Lemma 3.1. The Lie brackets (3.10)for the affine algebra L̂(g(n)) are equivalent to:

[Hk
αi

(z1), Hj
αs (z2)] = 〈Hk

αi
, H

j
αs 〉(n)
A (∂z2δ)(z1 − z2)ck+j

[Hk
αi

(z1), Xjα(z2)] =
{
α(Hk

αi
)Xk+jα (z2)δ(z1 − z2) k + j ≤ n

0 otherwise

[Xkα(z1), Xjβ(z2)] =
{
N(α, β)Xk+jα+β(z2)δ(z1 − z2) − 〈Xkα,Xjβ〉(n)

A (∂z2δ)(z1 − z2)ck+j k + j ≤ n

0 otherwise
[d,X(z)] = −(z∂z + 1)X(z) ∀X ∈ g(n)

[ci, X(z)] = 0 ∀X(z) ∈ L̂(g(n)), i = 0, . . . , n

where δ(z1 − z2) = z−1
1
∑
n∈Z

zn1
zn2

.

Until now we did not impose any restriction on the subset of complex numbers
{a0, . . . , an}, which appear in the definition of the bilinear form(2.3), but in view of their
realization as vertex operator algebra on “generalized” Fock spaces we need to suppose that
everyak is different from zero which, without loss of generality boils down to setak = 1
for everyk.

4. Vertex algebras representations

Now we can describe the construction of the vertex operators representation of our
Lie algebrasL̂(g(n)) in the case wheng is a simple complex Lie algebra. Using the same
constructions of the first section it can be easily proved that the Lie algebraL̂(g(n)) is
isomorph to the Lie algebra tensor product:

L̂(g(n)) � (L̃(g) ⊗ C
(n)(λ)) � Cd (4.1)

whereL̃(g) denotes as usual[10] the central extension of the loop algebraL(g) = g⊗
C(t, t−1) (which is of course a one codimensional subalgebra of the affine Lie algebra
L̂(g)); andd acts as the derivationt d

dt on C(t, t−1) while its action on the other factors is
trivial. This equivalence suggests of course a way to obtain a generalized vertex operators
representation of̂L(g(n)), namely ifΓ : L̃(g) → End(V ) is the restriction tõL(g) of a vertex
operator representation forL̂(g) andρ : C

(n)(λ) → End(Cn+1) is the representation(2.11)
of C

(n)(λ) then our “vertex operators representations” will be up the derivation “the tensor
product” of the two:

Π : L̂(g(n)) −→ End(V ⊗ C
n+1)

Π(X⊗ p(λ)) �→ Γ (X) ⊗ ρ(p(λ))
Π(d) �→ D⊗ 1.

(4.2)

whereD coincides with the action of the derivation ofL̂(g) on End(V ). Indeed we have
only to check that [Π(X⊗ p(λ)),Π(D⊗ 1)] = Π([X⊗ p(λ),Π(D⊗ 1)]) which follows
immediately from [Γ (X) ⊗ ρ(p(λ)),D⊗ 1] = [Γ (X),D] ⊗ ρ(p(λ)). Since this is the main
object of the present work let us explain into details this construction when the vertex
representationΓ of L̂(g) is the basic homogeneous representation[10,11,6].
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More precisely letQ be the root lattice associated with the simple Lie algebrag, which
we suppose to be of rankl and letC(Q) be its group algebra, i.e., the algebra with basis
eαα ∈ Q and multiplication:

eαeβ = eα+β, e0 = 1.

We shall denote byh = Q⊗Z C the complexification ofQ and by

ĥ = h⊗ C(t, t−1) ⊕ C

the affinization ofh, and finally byS the symmetric algebra over the spaceh<0 = ∑
j<0 h⊗

tj (following the literature we shall writeHtj in place ofH ⊗ tj). Then we can define a
representationπ of ĥ onVQ = S ⊗ C(Q) by settingπ = π1 ⊗ π2 whereπ1 acts onS as

π1(c0) = I

π1(Htn)(Ats) =
{
HAtn−s if n < 0
nδn,s〈H |A〉g if n ≥ 0

(4.3)

while π2 act on (Q) simply by

π2(K) = 0, π2(Htn)eα = δn,0〈α|H〉geα. (4.4)

Let now setHα = αv ⊗ 1, whereαv is the dual element inh of αα(n) = π(Hαtn), Hn =
π(Htn), andeα the operator onVQ of multiplication by 1⊗ eα. Then let us consider the
following End(VQ)-valued fields:

H(z) = ∑
n∈ZHnz−n−1

Γα(z) = ∑n
k=0

(
exp

(∑
n≥1

α(−n)zn

n

))(
exp

(∑
n≥1

α(n)z−n
n

))
eαzαbα

(4.5)

wherebα acts onVQ as

bα(s⊗ eα) = ε(α, β)s⊗ eα

with ε : Q → {±} is a two-cocycle ([11]) such that

ε(α, β)ε(β, α) = (−1)(α|β)+(α|α)(β|β).

Using these notations andTheorem 2.5we can prove.

Theorem 4.1. LetVnQ = ⊕n
i=0VQ be the direct sum of n+ 1copies ofVQ then the following

End(VNQ )-valued fields:

ck = cΛk, k = 0, . . . , n, c ∈ C

Hk
α(z) = ∑

m∈Z α(m)z−m−1Λk = Hα(z)Λk, k = 0, . . . , n

Γ kα (z) = ∑n
k=0

(
exp

(∑
m≥1

α(−m)zm

m

))(
exp

(∑
m≥1

α(m)z−m
m

)
eαzα

)
Λk

= Γα(z)Λk, k = 0, . . . , n

(4.6)
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and the last formula of (4.2) define a vertex operator representation of the Lie algebra
L̂(g) ⊗ C

(n)(λ), where the matrix Λ is given by Eq. (2.10).

Proof. As usual we need only to check that our generating series satisfies the right OPE.
But this can be easily done, keeping in mind the OPE of the fields(4.5) (see[10,11]). We
have indeed:

Hk
α(z)Hj

β(w) = Hα(z)Hβ(w)ΛkΛj =
{

∼ 〈Hα|Hβ〉
(z−w)2

ck+j if k + j ≤ n

0 otherwise

Hk(z)Γ jα (w) = H(z)Γα(z)ΛkΛj =
{∼ 〈H,α〉

z−w Γα(z)Λ
k+j if k + j ≤ n

0 otherwise.

(4.7)

In similar way

Γ kα (z)Γ j
β

(w) = Γα(z)Γβ(w)ΛkΛj = 0 if α+ β /∈ ∆

Γ kα (z)Γ j
β

(w) = Γα(z)Γβ(w)ΛkΛj =
{

∼ ε(α, β)
Γα+β
z−w Λ

k+j if k + j ≤ n

0 otherwise;
if α+ β ∈ ∆

Γ kα (z)Γ j−α(w) = Γα(z)Γ−α(z)ΛkΛj =
{∼ ε(α,−α)

ck+j
(z−w)2

+ α(w)
z−wΛ

k+j if k + j ≤ n

0 otherwise.

(4.8)

�
4.1. Generalized boson–fermion correspondence

In the next section we shall apply the theory of Kac Wakimoto[13] on order to obtain a
class of coupled soliton equations. Although this theory may be implemented using directly
the vertex operators given inTheorem 4.1even in this case there exists a generalized
fermionic construction which is in our opinion worth to be presented at least in the case in
which the simple Lie algebrag is of typeA.

Let us first consider the direct sum ofn+ 1 copies of infinite dimensional wedge algebras:

F (n) = ⊕n
i=0F

i (4.9)

where the spacesFi with i = 0, . . . , n are isomorph to the infinite wedge spaceF generated
by the semi-infinite monomials

i1 ∧ i2 ∧ · · · ∧ ij ∧ · · ·

where theij are integers such that

i1 > i2 > i3 and ij = ij−1 − 1 fornbig enough

(see[10] for more details). Every spaceFi has a charge decomposition

Fi = ⊕m∈ZFim

whereFim is the linear space spanned by all semi-infinite monomials inFi which differ
from the vector
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|m〉i = (m ∧m− 1 ∧m− 2 ∧ · · ·)i

called the vacuum vector of chargem in Fi only at finite number of places. Obviously the
same decomposition exists for the whole spaceF (n) asF (n) = ⊕m∈ZF (n)

m whereF (n)
m =

⊕n
i=0F

i
m.

On End(F (n)) we define the following operatorsψ(k)
i andψ∗(k)

i (k = 0, . . . , n, i ∈ N):

ψ
(k)
i ((i1 ∧ i2 ∧ · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)j, . . . , (i1 ∧ i2 ∧ · · ·)n)
= ∑n−k

l=0 ψiel+k,l((i1 ∧ i2 · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)j, . . . , (i1 ∧ i2 ∧ · · ·)n)
= (0, . . . ,0︸ ︷︷ ︸k, (ψi(i1 ∧ i2 ∧ · · ·)0)k, . . . , (ψi(i1 ∧ i2 ∧ · · ·)j)j+k, . . . ,

(ψi(i1 ∧ i2 ∧ · · ·)n−k)n)
ψ

∗(k)
i ((i1 ∧ i2 ∧ · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)j, . . . , (i1 ∧ i2 ∧ · · ·)n)
= ∑n−k

l=0 ψ
∗
i el+k,l((i1 ∧ i2 · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)j, . . . , (i1 ∧ i2 ∧ · · ·)n)

= (0, . . . ,0, (ψ∗
i (i1 ∧ i2 ∧ · · ·)0)k, . . . , (ψ∗

i (i1 ∧ i2 ∧ · · ·)j)j+k, . . . ,
(ψ∗
i (i1 ∧ i2 ∧ . . .)n−k)n)

(4.10)

where the action of the operatorsψj andψ∗
j is given by the formula[10]:

ψj((i1 ∧ i2 ∧ · · ·)m) =
{

0 if j = is for somes
(−1)s(i1 ∧ · · · ∧ ims ∧ iis+1 ∧ · · ·)m if is > j > is+1

ψ∗
j ((i1 ∧ i2 ∧ · · ·)m) =

{
0 if j 	= is for all s
(−1)s+1(i1 ∧ · · · ∧ is−1 ∧ iis+1 ∧ · · ·)m if j = is.

(4.11)

A simple computation shows that the operators defined above satisfies the equations

ψ
(k)
i ψ

(j)
l + ψ

(j)
l ψ

(k)
i = 0, ψ

∗(k)
i ψ

∗(j)
l + ψ

∗(j)
l ψ

∗(k)
i = 0

ψ
(k)
i ψ

∗(j)
l + ψ

∗(j)
l ψ

(k)
i =

{
δilΛ

j+k if j + k ≤ n

0 otherwise.
(4.12)

defining a generalized polynomial Clifford algebra of typeA, which in what follows will
be denoted byCL(n). This name may be justified observing that the same algebra can be
constructed by performing a universal algebraic construction starting from an opportune
infinite dimensional vector space endowed with a symmetric bilinear form related to the
bilinear form(2.3)of g(n). It is clear that the vector

|0〉 = ((0 ∧ −1 ∧ −2 ∧ · · ·)0,0, . . . ,0︸ ︷︷ ︸
n

)

is a cyclic vector with respect the action ofCL(n) (i.e.,F (n) = CL(n)(|0〉)) which satisfies
the relations

ψ
(k)
j |0〉 = 0 forj ≤ 0, ψ

∗(k)
j |0〉 = 0 forj > 0, k = 0, . . . , n.

Moreover it can be also checked that the operatorψ
∗(k)
i is the adjoint of the operatorψ(k)

i

with respect to the bilinear (non degenerated but not positive definite) form onF (n) given
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by

〈(i1 ∧ i2 ∧ · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)n|(i1 ∧ i2 ∧ · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)n〉F (n)

=
n∑
l=0

l∑
m=0

〈(i1 ∧ i2 ∧ · · ·)l|(i1 ∧ i2 ∧ · · ·)l−m〉 (4.13)

where〈·|·〉 denote the Hermitian form onF for which the canonical basis forF is or-
thonormal. The more significant consequence of the equations(4.12) are the following
commutation relations:

[ψ(l)
i ψ

∗(m−l)
j , ψ

(p)
k ] =

{
δkjψ

(m+p)
i if m+ p ≤ n

0 otherwise

[ψ(l)
i ψ

∗(m−l)
j , ψ

∗(p)
k ] =

{
−δkiψ∗(m+p)

j if m+ p ≤ n

0 otherwise,

(4.14)

which can be checked as follows

[ψ(l)
i ψ

∗(m−l)
j , ψ

(p)
k ] = ψ

(l)
i ψ

∗(m−l)
j ψ

(p)
k − ψ

(p)
k ψ

(l)
i ψ

∗(m−l)
j

(4.12)= ψ
(l)
i ψ

∗(m−l)
j ψ

(p)
k

+ψ(l)
i ψ

(p)
k ψ

∗(m−l)
j

= ψ
(l)
i (ψ∗(m−l)

j ψ
(p)
k + ψ

(p)
k ψ

∗(m−l)
j )

(4.12)= ψ
(l)
i δjkΛ

m+p−l

=
{
δkjψ

(m+p)
i if m+ p ≤ n

0 otherwise

while the similar proof for the second one is left to the reader.
The importance of equations(4.14)is due to the fact that can be used to define a repre-

sentation of a “polynomial” generalization of the infinite dimensional Lie algebragl∞ i.e.,
usingDefinition 2.1of the Lie algebra:

gl(n)
∞ = gl∞ ⊗ C

(n)(λ) (4.15)

Therefore a moment’s reflection shows thatgl(n)∞ is the Lie algebra given by the linear span
of the basis{Ekij}j,i∈Z,k=0,...,n with Lie brackets given by the formulas:

[Ekij, E
s
lm] =

{
δjlE

k+s
im − δimE

k+s
lj if k + s ≤ n

0 otherwise.
(4.16)

Similarly, starting from equations(4.12), one can view the polynomial Clifford algebra
CL(n) as the tensor productCL⊗ C

(n)(λ).
The representation of the Lie algebragl(n)∞ onF (n) is given as follows.

Theorem 4.2. The map Ψ : gl(n)∞ → End(F (n)) given by:

Ψ (Ekij) = 1

k + 1

k∑
l=0

ψ
(k−l)
i ψ

∗(l)
j , i, j ∈ Z, k = 0, . . . , n (4.17)
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defines a representation Ψ of gl(n)∞ on F (n).

Proof. Using formulas(4.14)we have fork + s ≤ n:

[Ψ (Ekij), Ψ (Eslm)] = 1

k + 1

1

s+ 1

 k∑
p=0

ψ
(k−p)
i ψ

∗(p)
j ,

s∑
q=0

ψ
(s−q)
l ψ∗(q)

m


= 1

k + 1

1

s+ 1

k∑
p=0

s∑
q=0

([ψ(k−p)
i ψ

∗(p)
j , ψ

(s−q)
l ψ∗(q)

m ])

= 1

k + 1

1

s+ 1

k∑
p=0

s∑
q=0

([ψ(k−p)
i ψ

∗(p)
j , ψ

(s−q)
l ]ψ∗(q)

m )

+ 1

k + 1

1

s+ 1

k∑
p=0

s∑
q=0

(ψ(k−p)
i [ψ∗(p)

j , ψ
(s−q)
l ψ∗(q)

m ])

= 1

s+ 1

1

k + 1

k∑
p=0

s∑
q=0

(δjlψ
(k+s−q)
i ψ∗(q)

m − δmiψ
(s−q)
l ψ

∗(k+q)
j )

= δjl
1

s+ 1

s∑
q=0

ψ
(k+s−q)
i ψ∗(q)

m − δmi
1

s+ 1

k∑
q=0

(ψ(s−q)
l ψ

∗(k+q)
j )

= δjlΨ (Ek+sim ) − δmiΨ (Ek+slj ) = Ψ ([Ekij, E
s
lm])

since it is easily checked that1
s+1

∑k
q=0ψ

(s−q)
l ψ

∗(k+q)
j = Ψ (Ek+slj ) and 1

s+1

∑s
q=0

ψ
(k+s−q)
i ψ

∗(q)
m = Ψ (Ek+sim ). While if k + s > n a similar computation gives [Ψ (Ekij),

Ψ (Eslm)] = 0 as wanted. �

Note that, while the action of CL(n) interchanges the charges, every subspacesF (n)
m is left

invariant by the representationΨ . Further these latter spaces are indecomposable so thatΨ

is the direct sum of its restrictions onF (n)
m .

We are actually also interested in the corresponding group representation, despite the fact
thatgl(n)∞ = Lie(GL∞ � gl∞) the exponential map of this algebra lies in a bigger group,
which contains (GL∞ � gl∞) as a proper subgroup[18].

Proposition 4.3. Let N(n)∞ be the following subset of gl(n)∞ regarded as associative ring:

N(n)
∞ = {I +X|X ∈ gl∞ ⊗ λC(n−1)(λ)}

then

1. N(n)∞ is a group with respect the ring’s product.
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2. The group G(n)∞ = GL∞ �N
(n)∞ is the littlest group which contains the image of the

exponential map on gl(n)∞ .

Proof.

1. Since it is obvious that the setN(n)∞ is closed with respect to the ring’s product it is
enough to show that it contains the inverse of any its element. But this is simple a matter
of computation we have indeed that

(I +X)

(
n∑
k=0

(−1)Xk
)

= I

with
∑n
k=0(−1)Xk which belongs toN(n)∞ .

2. The second statement follows immediately once one recognizes thatGL∞ is the expo-
nential group of the Lie algebragl∞ [10] and thatgl(n)∞ = gl∞ � n(n) wheren(n) is the
Lie algebragl∞ ⊗ λC(n−1)(λ). �

The representationΨ can be exponentiated to the Lie groupG(n)∞ . Namely if g is an
element ofG(n)∞ of the formg = expX0 whereX0 belongs togl∞ ⊗ 1 � gl∞ then we have
the natural extension of the usual case[10]

Ψ (g)((i1 ∧ i2 ∧ · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)j, . . . , (i1 ∧ i2 ∧ · · ·)n)
= ((g(i1 ∧ i2 ∧ · · ·)0)0, . . . , (g(i1 ∧ i2 ∧ · · ·)j)j, . . . , (g(i1 ∧ i2 ∧ · · ·)n)n) (4.18)

where

(g(i1 ∧ i2 · · ·)s)s =
 ∑
j1>j2>···

det(gi1,i2,...j1,j2,...
)(j1 ∧ j2 · · ·)

s

.

While if g is an element ofG(n)∞ of the formg = expXk withXk which belongs togl∞ ⊗ λk

with k > 0 then the action becomes:

Ψ (expXk)((i1 ∧ i2 · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)j, . . . , (i1 ∧ i2 ∧ · · ·)n)
= (i1 ∧ i2 ∧ · · ·)0, . . . , (i1 ∧ i2 ∧ · · ·)k−1, (i1 ∧ i2 ∧ · · ·)k

+ (Xk(i1 ∧ i2 ∧ · · ·)0)k, . . . ,

[r/k]∑
q=0

1

q!
X
q
k(i1 ∧ i2 ∧ · · ·)r−kq

r

, . . . ,

×


[n/k]∑
q=0

1

q!
X
q
ki1 ∧ i2 ∧ · · ·

n−kq
n

(4.19)

where we have denoted with [r
k
] the integer part ofr

k
.
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It is still possible to construct a bosonization of the representationΨ of gl(n)∞ , which
generalize to the our contest that already known in the literature[10,11,13]. To achieve
this task we have first to extend the representationΨ from gl(n)∞ to a(n)∞ = a∞ ⊗ C

(n), this
requires to get rid from anomalies to modify our representationΨ by putting

Ψ (Ekij) =
{

1
k+1

∑k
l=0ψ

(k−l)
i ψ

∗(l)
j if i 	= j or i = j > 0

− 1
k+1

∑k
l=0ψ

∗(l)
j ψ

(k−l)
i if i = j ≤ 0.

(4.20)

Next we must define the subalgebras(n) of a(n)∞ spanned by the elements

ski =
∑
j∈Z

Ekj,j+i, andck, k = 0, . . . , n

whose Lie brackets are

[skp, s
j
q] =

{
pδp,−qck+j if j + k ≤ n

0 otherwise.
(4.21)

and which can be therefore viewed as a generalized “Heisenberg Lie algebra”. Using the
representationΨ this algebra is given by the free bosonic fieldsαkj :

αkj = 1
k+1

∑k
l=0

∑
i∈Z ψ

(k−l)
i ψ

∗(l)
i+j if j ∈ Z{0}, k = 0, . . . , n

αk0 = 1
k+1

∑k
l=0

∑
i>0ψ

(k−l)
i ψ

∗(l)
i −∑k

l=0
∑
i≤0ψ

(k−l)
i ψ

∗(l)
i , k = 0, . . . , n.

(4.22)

Now following Kac in [10] we introduce the bosonic Fock spaceB(n) given by the direct
of n+ 1 copies of the usual bosonic Fock spaceB = C[x1, x2, . . . ; q, q−1]:

B(n) = n⊕
i=0
Bi (4.23)

whereBI i = 0, . . . , n are copies ofB. For our purposes it is also useful to look at this space
as the tensor product between the Fock spaceB and ann+ 1 dimensional complex space:

B(n) = B⊗ C
(n+1) (4.24)

and to consider its decomposition in “charged subspaces”:

B(n) = ⊕
m∈Z

Bm, Bm = qmC[x1, x2, . . .] ⊗ C
m. (4.25)

On it is defined the following representationrB
(n)

of the generalized Heisenberg algebra
s(n) where we have normalizedc to 1:

rB
(n)

(skm) = ∂
∂xm

⊗Λk

rB
(n)

(sk−m) = mxm ⊗Λk

}
, if m > 0, k = 0, . . . , n

rB
(n)

(sk0) = q ∂
∂q

⊗Λk, k = 0, . . . , n.

(4.26)

It is straightforward to see that the usual isomorphism ofs = s(0)-modulesσ : F � B (see
[10]) can be extended to as(n)-modulesσn : F (n) � B(n) simply by taking the direct sum
of n+ 1 copies of the isomorphismσ.



434 P. Casati, G. Ortenzi / Journal of Geometry and Physics 56 (2006) 418–449

To compute the action of the isomorphismσ is useful to introduce the generating series
of the fermionic fields:

ψ(k)(z) =
∑
j∈Z

ψ
(k)
j z

j, ψ∗(k)(z) =
∑
j∈Z

ψ
∗(k)
j z−j, k = 0, . . . , n (4.27)

and also the corresponding bosonic operators:

Γ k+(z) =
∑
n≥1

αkn
z−n

n
, Γ k−(z) =

∑
n≥1

αk−n
zn

n
, k = 0, . . . , n. (4.28)

Which can be also written as:

Γ k+(z) =
∑
n≥1

z−n

n

∂

∂xn
⊗Λk, Γ k−(z) =

∑
n≥1

zn

n
xn ⊗Λk. (4.29)

Using these operators we have indeed the

Theorem 4.4. For every k = 0, . . . , n we have:

ψ(k)(z) = zα
k
0qΓ k−(z)Γ k+(z)−1

ψ∗(k)(z) = q−1z−α
k
0Γ k−(z)−1Γ k+(z).

(4.30)

Proof. Let us prove only the first of equations(4.30)since a completely similar construction
works for the second ones. From the Eqs.(4.22) and (4.27)we obtain that

[αkj, ψ
(i)(z)] =

{
zjψ(k+i)(z) if i+ k ≤ n

0 otherwise

[αkj, ψ
∗(i)(z)] =

{−zjψ∗(k+i)(z) if i+ k ≤ n

0 otherwise

now using the mapσ(n) we can transport these relations toB(n), for j > 0 we have

σ(n)[αkj, ψ
(i)(z)](σ(n))−1 =

[
∂
∂xj

⊗Λk, σ(n)ψ(i)(z)(σ(n))−1
]

=
{
zjσ(n)ψ(k+i)(z)(σ(n))−1 if i+ k ≤ n

0 otherwise

while for j negative

σ(n)[αkj, ψ
(i)(z)](σ(n))−1 = [xj ⊗Λk, σ(n)ψ(i)(z)(σ(n))−1]

=


z−j
j
σ(n)ψ(k+i)(z)(σ(n))−1 if i+ k ≤ n

0 otherwise.
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Using these equations, the fact thatψ
(k)
j can be written asψjΛk and Lemma 14.5 of[10]

we can now conclude that the operatorσ(n)ψ
(k)
j (σ(n))−1 brings the subspaceB(n)

m in the

subspaceB(n)
m+1 for everym and it is of the form

σ(n)ψ
(k)
j (σ(n))−1 = Cm(z)qΓ k(z)

with

Γ k(z) =
exp

∑
j≥1

zjxj

exp

−
∑
j≥1

z−j

j

∂

∂xj

⊗Λk

while the same argument used in the proof of Theorem 14.10 in[10] shows thatCm(z) =
zm+1. �

Theorem 4.5. The generating series for the representation Ψ (4.17)of gl(n)∞ is∑
i,j∈Z

zi1z
−j
2 Ψ (Ekij) =

(
z1

z2

)m 1

1 − (z2/z1)
Γ k(z1, z2) (4.31)

where

Γ k(z1, z2) = (k + 1) exp

∑
p≥1

(zp1 − z
p
2)xp

exp

∑
p≥1

z
−p
1 − z

−p
2

p

∂

∂xp

Λk.
(4.32)

Proof. We observe that from(4.27)follows

∑
i,j∈Z

zi1z
−j
2 Ψ (Ekij) = 1

k + 1

k∑
l=0

ψ
(k−l)
i (z1)ψ∗(l)

j (z2)

substituting(4.30)we get

∑
i,j∈Z

zi1z
−j
2 Ψ (Ekij) = 1

k + 1

k∑
l=0

z
αk−l0
1 qΓ k−l− (z1)Γ k−l+ (z1)−1q−1z

−αl0
2 Γ l−(z2)−1Γ l+(z2).

Since it holds[10] for every 0≤ l ≤ k that

Γ k−l+ (z1)−1Γ l−(z2)−1 = Γ l−(z2)−1Γ k−l+ (z1)−1
(

1 − z2

z1

)−1

the previous equation using also(4.29)becomes
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(
1 − z2

z1

)−1 1

k + 1

k∑
l=0

n−k+l∑
s=0

zm1 ek−l+s,s
n−l∑
r=0

z−m2 el+s,s

×
n−k+l∑
s=0

exp

∑
p≥1

(zp1xp)

 ek−l+s,s n−l∑
r=0

exp

∑
p≥1

−zp2xp
 el+r,r

×
n−k+l∑
s=0

exp

∑
p≥1

z
−p
1 (∂/∂xp)

p

 ek−l+s,s n−l∑
r=0

exp

∑
p≥1

−z−p1 (∂/∂xp)

p

 el+r,r
and finally

(k + 1)

(
z1

z2

)m(
1 − z2

z1

)−1

× exp

∑
p≥1

(zp1 − z
p
2)xp

exp

∑
p≥1

z
−p
1 − z

−p
2

p

∂

∂xp

Λk �

5. Coupled Hirota bilinear equations

The aim of this section is to derive from the vertex operator algebras constructed in
the previous one the corresponding hierarchies of Hirota bilinear equations. The key link
to connect our representations with the corresponding bilinear equations are opportune
homogeneous Casimir operators acting on particular quotient of tensor products of rep-
resentations. The starting point is to observe that the representations ofg(n) or gl(n)∞ and
CL(n) presented in the previous section can be viewed as tensor product between an
infinite dimensional spaceV and the spaceCn+1 where L̃(g) and d (or gl∞ and CL)
and the polynomial ringC(n)(λ) respectively act (as already pointed out in Eq.(4.1)
for the algebrasg(n)). Moreover since it is easily to see thatC

n+1 asC
(n)(λ)-module is

isomorph toC
(n)(λ) itself, we can decompose our representation’s space as the tensor

product:

V (n)(λ) = V ⊗ C
(n)(λ). (5.1)

This in turn beingV ⊗ C
(n)(λ) aC

(n)(λ)-module with trivial action on the first factor allow
us to construct ag(n) (gl∞ andCL(n)) representation on the “modified tensor product”

(V ⊗ C
(n)(λ)) ⊗C(n)(λ) (V ⊗ C

(n)(λ)), (5.2)

these will be the space where our generalized Hirota equations will live. Since in a
similar way also the algebrasg(n), gl(n)∞ , andCL(n) are C

(n)(λ)-modules we may con-
sider the following elements ofg(n) ⊗C(n)(λ) g

(n), gl(n)∞ ⊗C(n) gl(n)∞ andCL(n)∞ ⊗C(n) CL(n),
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respectively:

Ω2 =
n∑

k,l=0

∑
α∈�∪{0}

∑
i∈Z

(e(i)
α ⊗ λk) ⊗C(n)(λ) (e(i)

−α ⊗ λl)

=
n∑

k=−0

∑
α∈�∪{0}

∑
i∈Z

(e(i)
α ⊗ e

(i)
−α) ⊗ λk

and

Ω1 =
n∑

k,l=0

∑
j∈Z

(ψj ⊗ λk) ⊗C(n)(λ) (ψ∗
j ⊗ λl) =

n∑
k=0

∑
j∈Z

(ψj ⊗ ψ∗
j ) ⊗ λk

which act naturally on the space (V ⊗ C
(n)(λ)) ⊗C(n)(λ) (V ⊗ C

(n)(λ)).

Proposition 5.1. The operatorsΩ2 andΩ1 commute with the action on V ⊗ C
(n)(λ) of g(n)

and gl(n)∞ , respectively.

Proof. The thesis follows by straightforward computation. For example let us considerΩ2
and letX⊗ λj an homogeneous element ofg(n) then we have indeed:

[Ω2, X⊗ λj] =
 n∑
k=−0

∑
α∈�∪{0}

∑
i∈Z

(e(i)
α ⊗ e

(i)
−α) ⊗ λk,X⊗ λj


=
 n∑
k=−0

∑
α∈�∪{0}

∑
i∈Z

(e(i)
α ⊗ e

(i)
−α), X

⊗ λk+j = 0

because
∑n
k=−0

∑
α∈�∪{0}

∑
i∈Z e

(i)
α ⊗ e

(i)
−α is Casimir operator of̃L(g). Similar computa-

tions proves the statement for the operatorΩ1. �

5.1. Coupled KP hierarchies

Let us compute these equations explicitly starting with the case ofgl(n)∞ .
SinceF (n)(λ) ⊗C(n)(λ) F

(n)(λ) is agl(n)∞ -module the Casimir operatorΩ1 commutes with

action of any element of this algebra and therefore with each element ofGL
(n)∞ . But this in

turn observing that

n∑
k=0

k∑
l=0

∑
j∈Z

1

k + 1
(ψj ⊗ λk−l) ⊗C(n)(λ) (ψ∗

j ⊗ λl) =
n∑
k=0

∑
j∈Z

(ψj ⊗ ψ∗
j ) ⊗ λk = Ω1
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says that any vectorτ = (τ0, . . . , τn) of the orbit ofGL(n)∞ (|0〉,0, . . . ,0) satisfies the equa-
tion

n∑
p,q=0
p+q≤n

n∑
k=0

k∑
l=0

∑
j∈Z

1

k + 1
ψ

(k−l)
j (τp) ⊗C(n)(λ) ψ

∗(l)
j (τq) = 0. (5.3)

Moreover the argument of Theorem 14.11 in[10] proves

Lemma 5.2. The orbit ofGL(n)∞ |0〉 is the set of all nonzero solutions τ ∈ F (n)
0 of Eq. (5.3).

Our generalized Hirota bilinear equations will be the bosonic version of Eq.(5.3). For the
convenience of the reader let us briefly outline their explicit construction despite to the fact
that this is up to some minor changes quite standard. To apply to Eq.(5.3)the isomorphism
σ(n) we have to write it in terms ofψ(k)(z) andψ∗(k)(z) as

z0-term of
n∑

p,q=0
p+q≤n

n∑
k=0

k∑
l=0

1

k + 1
ψ(k−l)(z)τp ⊗C(n)(λ) ψ

∗(l)(z)τq = 0. (5.4)

Then its bosonizated form is

resz=0

n∑
p,q=0
p+q≤n

n∑
k=0

k∑
l=0

exp
∑
j≥1

zj(x′
j − x′′

j )

exp−
∑
j≥1

z−j

j

(
∂

∂x′
j

− ∂

∂x′′
j

)
× τp(x′)τq(x′′) = 0. (5.5)

Introducing the new variables

xj = 1
2(x′

j + x′′
j ), yj = 1

2(x′
j − x′′

j )

Eq.(5.5)becomes:

resz=0

n∑
p,q=0
p+q≤n

n∑
k=0

k∑
l=0

exp 2
∑
j≥1

zj(yj)

exp−
∑
j≥1

z−j

j

(
∂

∂yj

)
× τp(x+ y)τq(x− y) = 0.

This latter equation can be easily written in terms of elementary Schur polynomialsSjj ∈ N
as:

k∑
p=0

∑
j≥0

Sj(2y)Sj+1(−∂̃y)τp(x+ y)τk−p(x− y) = 0, k = 0, . . . , n (5.6)

where as usual̃∂y means
(
∂
∂y1
, 1

2
∂
∂y2
, 1

3
∂
∂y3
, . . .

)
. Then introducing the Hirota bilinear dif-

ferentiation by:

P(D1,D2, . . .)fg = P

(
∂

∂u1
,
∂

∂u2
, . . .

)
f (x1 + u1, x2 + u2, . . .)

× g(x1 − u1, x2 − u2, . . .)
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and using the Taylor formula

P(∂̃y)τp(x+ y)τq(x− y) = P(∂̃u)τp(x+ y + u)τq(x− y − u)|
u=0

= P(∂̃u)

exp
∑
j≥1

yj
∂

∂uj

 τp(x+ u)τq(x− u)|
u=0,

we can write(5.6) in the Hirota bilinear form:

k∑
p=0

∑
j≥0

Sj(2y)Sj+1(−D̃)

exp
∑
s≥1

ysDs

 τpτk−p, k = 0, . . . , n. (5.7)

(Here again as usual̃D stands for (D1,
1
2D2,

1
3D3, . . . ,0)). Expanding(5.7)as a multiple

Taylor series in the variablesy1, y2, . . . we obtain that each coefficient of the series must
vanish giving arise to a hierarchy in an infinite number of non linear partial differential
equations in the Hirota bilinear form, which of course contains the celebrated KP hier-
archy. Observe thatP(D1, . . . , Dk)

∑k
p=0 τpτk−p = 0 identically for any odd monomial

P(D1, . . . , Dk) in the Hirota operatorsDk because
∑k
p=0 τpτk−p = ∑k

p=0 τk−pτp for any
k = 0, . . . , n. Therefore the first non trivial coupled Hirota equations are:

(D4
1 + 3D2

2 − 4D1D3)τ0τ0 = 0

(D4
1 + 3D2

2 − 4D1D3)τ0τ1 = 0
· · · = · · ·

(D4
1 + 3D2

2 − 4D1D3)(
∑k
p=0 τpτk−p) = 0

· · · = · · ·
(D4

1 + 3D2
2 − 4D1D3)(

∑n
p=0 τpτn−p) = 0

(5.8)

To write this equations in the “soliton variables” we perform the change of variablesu0 =
2∂

2 log(τ0)
∂x2 , ui = τi

τ0
which generalizes to our case those proposed by Hirota et al. in[8]. In

these new variables equations(5.8)read
3
4u0yy − (u0t − 3

2u0u0x − 1
4u0xxx)x = 0

ukxxxx − 4ukxt + 3ukyy + 6u0ukxx +
(∑k−1

j=1 2ujxu(k−j)t + 2ujtu(k−j)x
−3ujyu(k−j)y − 6u0ujxu(k−j)x − 2ujxxxu(k−j)x − 3ujxxu(k−j)xx
− 2ujxu(k−j)xxx

) = 0, k = 1, . . . , n

(5.9)

wherex = x1, y = x2 andt = x3. The vertex operator construction offers a canonical way
to produce a class of generalized soliton solutions for these equations. Indeed for what
said above the groupG(n)∞ brings solutions into solutions. Therefore, in particular, we can
construct non trivial solutions (calledN soliton solution) of our hierarchies by acting with
the polynomial vertex operators on the trivial solution (1,0, . . . ,0)T. This requires to write
explicitly a formula for the composition of the action ofN vertex operators on the spaceB(n).
But using the induction onN and the identity exp(−∑

j≥1 x
j/j) = 1 − x this formula writ-

ten in components, for a generic element (τ0, . . . , τn) of B(n) and for some indeterminates
u
j
1, . . . , u

j
N , vj1, . . . , v

j
N , j = 0, . . . , n becomes
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j=N

 n∑
kj=0

Γ (u
kj
j , v

kj
j )Λkj

 (τ0(x1, x2, . . .), . . . , τn(x1, x2, . . .))
T


m

=
n∑

k1,...,kN ,s=0
k1+···+kN+s=m

∏
1≤i≤j≤N

 (u
(kj)
j − u

(ki)
i )(v

(kj)
j − v

(ki)
i )

(u
(kj)
j − v

(ki)
i )(v

(kj)
j − u

(ki)
i )

×
exp

∑
r≥1

N∑
l=1

((ukll )r − (vkll )r)xr

×τs
(
. . . , xr − 1

r

N∑
l=1

((ukll )−r − (vkll )−r), . . .

) ,
m = 0, . . . , n.

(5.10)

First of all this formula shows that any matrix
∑n
k=0Γ (uk, vk)Λk acts as nilpotent operator,

it hold indeed

Lemma 5.3. For every s, 0 ≤ s ≤ n we have that

(
n∑
k=0

Γ (uk, vk)Λk
)s

(0, . . . , τr,0, . . .)
T = 0 (5.11)

for every τr ∈ C(x1, x2, . . .) and every choice of uk and vk, if and only if s >
[

1+√
1+8(n−r)

2

]
where [x] denotes the integer part of x.

Moreover the mth component of the vector (
∑n
k=0Γ (uk, vk)Λk)s(0, . . . , τr,0, . . .)T van-

ishes identically if and only if s >
[

1+√
1+8(m−r)

2

]
.

Proof. If we set in formula(5.10)u
kj
j = ukj andv

kj
j = vkj then it is easily to check that

(
∑n
k=0Γ (uk, vk)Λk)s(0, . . . , τr,0, . . .)T = 0 for everyτs ∈ C(x1, x2, . . .) and every choice

of ukj andvkj if and only if kj = ki for somekj andki in each set of non positive integers
{k1, . . . , ks} which appears in the right hand of(5.10). Or in other words if and only if
any set of non negative integers{k1, . . . , ks} such that

∑s
i=1 ki = n− r contains at least

two elements which coincide. Suppose that{k1, . . . , ks} is a sequence with all elements
distinct such that

∑s
i=1 ki = n− r, then, since the sequence ofs non negative pairwise

distinct integers whose sum is the smallest is obviously{0,1, . . . , N}, we must have that
n− r = ∑s

i=1 ki ≥ ∑s
i=0 i = s(s−1)

2 . Therefore Eq.(5.11)is identically satisfied only and

only if s >
[

1+√
1+8(n−r)

2

]
. A completely similar argument proves the second part of the

lemma. �
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Using the statement of the lemma we can write the exponential map of an element of the
type

∑
k=0 αkΓ (uk, vk) as

exp

(∑
k=0

αkΓ (uk, vk)

)
=

n∑
k=0

Λk

[(1+√
1+8k)/2]∑
j=0

1

j!

∑
s1+···+sj=k

j∏
i=1

αsiΓ (usi , vsi )

 .
Therefore from theLemma 5.2follows that the components of anN soliton solution of the
polynomial KP hierarchy is

τα1
0,...,α

1
n,...,α

N
n ,u

1
0,...,u

N
n ,v

1
0,...,v

N
n

(x)

=
n∑
k=0

Λk

[(1+√
1+8k)/2]∑
j=0

1

j!

∑
s1+···+sj=k

j∏
i=1

αsiΓ (usi , vsi )

 (1,0, . . . ,0)T. (5.12)

In particular an 1-soliton solution (again written in component) is

(τα0,...,αn,u0,...,un,v0,...,vn (x))m

=
[(1+√

1+8k)/2]∑
j=0

1

j!

∑
s1+···+sj=k

j∏
i=1

αsi

∏
0≤i<l≤j

(usi − uil )(vsi − vsl )

(usi − vsl )(vsi − usl )

×
exp

∑
r≥1

j∑
i=1

(ursi − vrsi )xr

 , m = 0, . . . , n.

This solution for the simplest coupled case (whenn = 1):

3
4u0yy −

(
u0t − 3

2u0u0x − 1
4u0xxx

)
x

= 0

u1xxxx − 4u1xt + 3u1yy + 6u0u1xx = 0.
(5.13)

takes withα0 = α1 = 1 the form

(
τ0

τ1

)
=


1 + exp

(∑
r≥1(ur0 − vr0)xr

)
exp

(∑
r≥1(ur1 − vr1)xr

)+ 2(u0−u1)(v0−v1)
(u0−v1)(v0−u1)

exp
(∑

r≥1(ur0 − vr0 + ur1 − vr0)xr
)

 .
Of course in the contest of the single equations(5.13) we can view the indeterminates
x4, x5, . . . as parameters in the expression of the solution, which will explicitly depend only
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from the first three ones. Therefore explicitly:

u0(x, y, t) = 1
2(u0 − v0)

(
cosh(12(u0 − v0)x+ (u2

0 − v2
0)y + (u3

0 − v3
0)t + γ0)

)−2

u1(x, y, t) = 1
2

(
cosh(12(u0 − v0)x+ (u2

0 − v2
0)y + (u3

0 − v3
0)t + γ0)

)−1

×
{

e−1/2((u0−v0)x+(u2
0−v2

0)y+(u3
0−v3

0)t+γ0)

+2(u0−u1)(v0−v1)
(u0−v1)(v0−u1)e

1/2((u0−v0)x+(u2
0−v2

0)y+(u3
0−v3

0)t+γ0)
}

× e1/2((u1−v1)x+(u2
1−v2

1)y+(u3
1−v3

1)t+γ1)

(5.14)

whereγi with i = 0,1 are arbitrary constants.

5.2. Coupled KdV and Boussinesq hierarchies

Similarly we may construct a generalization of the KdV hierarchy (i.e., coupled KdV
hierarchies) by considering the principal “basic” representation of the polynomial Lie
algebraL̂(sl(n)

2 ). From what done in Section4 we consider thêL(sl(n)
2 )-moduleVnQ =

⊕n
j=0C(x1, x3, x5, . . .) given by the formulas

Hk
j = Λk ∂

∂xj
, Hk−j = jxjΛ

k, j ∈ N
odd, k = 0,1, . . . , n

ck = Λk, 2d − 1
2A

k
0 = −∑

j∈Nodd jxjΛ
k ∂
∂xj
, k = 0,1, . . . , n

Ak(z) = 1
2(Γ k(z) − 1), k = 0,1, . . . , n

(5.15)

where

Hk
2j+1 = tj(Xkα − tXk−α), Ak2j = −tj(tHk

α), Ak2j+1 = tj(Xkα − tXk−α)

with

Xkα =
(

0 1
0 0

)
⊗ λk, Xk−α =

(
0 0
1 0

)
⊗ λk, Hk

α =
(

1 0
0 −1

)
⊗ λk

and finally

Γ k(z) =
exp 2

∑
j∈Nodd

zjxj

exp−2
∑
j∈Nodd

z−j

j

∂

∂xj

Λk.
Then the polynomial Hirota bilinear equation are given by

Ω2(v⊗C(n)(λ) v) = µv⊗C(n)(λ) v,
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whereµ ∈ C which is equivalent to the following hierarchy of bilinear equations:

k∑
p=0

∑
j>0

Sj(4y1,0,4y3, . . .)Sj

(
−2

1
D1,0,−2

3
D3, . . .

)
− 8

∑
j∈Nodd

jyjDj


×
exp

∑
j∈Nodd

yjDj

 τpτk−p = 0, k = 0, . . . , n. (5.16)

Reasoning as in the previous case of the coupled KP equations we have that the first non
trivial bilinear equations in the hierarchy are:

k∑
p=0

(−4D1D3 +D4
1)τpτk−p = 0, k = 0, . . . , n.

These equations, by imposing the variables’ transformationu0 = 2∂
2 log(τ0)
∂x2 ui = τi

τ0
i =

1, . . . , n, become
(u0t − 3

2u0u0x − 1
4u0xxx)x = 0

ukxxxx − 4ukxt + 6u0ukxx +
(∑k−1

j=1 2ujxu(k−j)t + 2ujtu(k−j)x
− 6u0ujxu(k−j)x − 2ujxxxu(k−j)x−3ujxxu(k−j)xx−2ujxu(k−j)xxx

) = 0,
k = 1, . . . , n.

(5.17)

which are generalizations of the coupled equation (12) in[8]. In particular forn = 1 we
have

u0t − 3
2u0u0x − 1

4u0xxx = 0
6u0u1xx + u1xxxx − 4u1xt = 0.

(5.18)

This latter equations make the contact with the literature[8] and[20] (more precisely setting
u = u0, v = u1x and rescaling the timet → −4t one obtains equations (2) of[20]). Further
is worth to note that by taking the derivative with respect tox of the second equation and
puttingv0 = u0 andv1 = u1xx equations(5.18)become

v0t = 3
2v0v0x + 1

4v0xxx

v1t = 1
4v1xxx + 3

2v0v1x + 3
2v0xv1.

These equations are bihamiltonian with respect the two Poisson tensors[1,5]

P1 =
(

1
2∂xxx + 2v0∂x + v0x 0

0 −2∂x

)

P2 =
(

0 1
2∂xxx + 2v0∂x + v0x

1
2∂xxx + 2v0∂x + v0x 2v1∂x + v1x

)
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namely

(
v0t
v1t

)
= P1

( −1
2v0

−1
8v1xx − 3

4v0v1

)
= P2

( 1
2v1

−1
2v0

)
.

Similarly they can be also written in the Lax formdLdt = [L,B] where

L =
(
∂xx + v0 0

v1 ∂xx + v0

)

B =
(−∂xxx − 3

4v0x − 3
2v0∂x 0

−3
4v1x − 3

2v1∂x −∂xxx − 3
4v0x − 3

2v0∂x

)
.

Moreover analogous changes of variables lead to the Lax pairs for the other hierarchies
arising from the Lie algebraŝL(sl(n)

k ).
Actually, as in the standard case, these hierarchy can be recovered from the polynomial

KP (5.8)by performing a reduction procedure, which amounts to eliminate the dependence
from the “even” variablesx2j j ∈ N of the Fock space. This in turn corresponds to restrict

the representation ofgl(n)∞ onto its subalgebraŝL(sl(n)
2 ), giving Lie algebraic explanation of

what done in the recent literature[14]. Therefore the soliton solutions for the coupled KdV
hierarchies can be recovered from those written for the coupled KP equations(5.12)erasing
the even variables. In the particular case whereasn = 2 this reduction method applied to
(5.14)leads to the following solutions:

u0(x, y, t) = 1
2(u0 − v0)

(
cosh(12(u0 − v0)x+ (u3

0 − v3
0)t + γ0)

)−2

u1(x, y, t) = 1
2

(
cosh

(
1
2(u0 − v0)x+ (u3

0 − v3
0)t + γ0

))−1

×
{

e−1/2((u0−v0)x+(u3
0−v3

0)t+γ0)

+2(u0−u1)(v0−v1)
(u0−v1)(v0−u1)e

1/2((u0−v0)x+(u3
0−v3

0)t+γ0)
}

× e1/2((u1−v1)x+(u3
1−v3

1)t+γ1)

(5.19)

whereγi with i = 0,1 are still arbitrary constants.
In the same way we can recovered from the coupled KP hierarchy the “coupled Boussi-

nesq” hierarchy by erasing all the variablesx3j with j ∈ N, which again corresponds to

restrict our representation to the Lie algebraL̂(sl(n)
3 ). In this case the first non trivial bilinear

Hirota equations are:

(D4
1 + 3D2

2)

 n∑
p=0

τpτn−p

 = 0, k = 0, . . . , n.
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In particular whenn = 1 puttingu0 = 2(log(τ0))xx and as usualu1 = τ1
τ0

we get

3u0tt + u0xxxx + 6u2
0x + 6u0u0xx = 0

3u1tt + u1xxxx + 6u0u1xx = 0

wherex = x1, t = x2. The multi-soliton solutions of these equation can obviously recovered
from the solutions(5.12)by erasing the variablesx3j.

5.3. Coupled BKP hierarchies and their first reductions

The construction presented above can be extended to simple Lie algebras, which are
not of typeA. In particular we would like to finish the chapter by outlining briefly the
case of the Lie algebras of typeB. In order to construct the bilinear Hirota equations for
the polynomial BKP hierarchy, we have to consider the polynomial Clifford algebra CL(n)

B

defined as CLB ⊗ C
(n)(λ). As in the A case it can be seen as an algebra of operators on

a particular space. LetV be the irreducible Verma module with highest weight vector|0〉
for the usual Clifford Lie algebra CLB (i.e. CL(0)

B ). Let us consider onV (n) = ⊕n
i=0Vi

Vi � V,∀i = 0, . . . , n the operatorsφ(k)
i , i ∈ Z, k = 0, . . . , n:

φ
(j)
i (v0, . . . , vn) = (0, . . . ,0︸ ︷︷ ︸

j

, φiv0, . . . , φivn−j)

whereφivj is the usual action of the elements ofCLB onV . From the tensorial definition

of CL(n)
B the relation among the elements of the algebra becomes in this polynomial case:

φ
(k)
i φ

(j)
l + φ

(j)
l φ

(k)
i =

{
(−1)iδi,−lΛj+k if j + k ≤ n

0 otherwise.

Using this action we can define forn ∈ Z
odd the neutral bosonic fields:

βkm = 1

2(k + 1)

k∑
l=0

∑
j≥1

(−1)j+1φ
(k−l)
j φ

(l)
−j−m

which generate the associated generalized Heisenberg algebra

[βhp, β
k
q] =

{
1
2pδp,−qΛ

h+k if h+ k ≤ n

0 otherwise.

Now we can define a generalized boson–fermion correspondence of typeB σ(n)
B : V (n) →

B(n) = ⊕n
k=0Bk whereBk = C[x1, x3, x5, . . . ; q]/(q2 − 1

2) for all k, which nothing else that
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the direct sum ofn+ 1 copies of the usual isomorphism[10] σB and therefore

σ
(n)
B (0, . . . ,0︸ ︷︷ ︸k−1

, |0〉,0 . . . ,0) = (0, . . . ,0︸ ︷︷ ︸k−1
,1,0 . . . ,0)

σ
(n)
B φk0(|0〉,0 . . . ,0) = (0, . . . ,0︸ ︷︷ ︸k−1

, q,0 . . . ,0)

and forp ∈ N
odd

σ
(n)
B βkp(σ(n)

B )−1 = Λk
∂

∂xp
, σ

(n)
B βk−p(σ(n)

B )−1 = 1

2
Λkpxp.

Then if we introduce the neutral fermionic fields:

φ(k)(z) =
∑
i∈Z

φ
(k)
i z

i

we can show (as in the case ofa(n)∞ ) that

σ
(n)
B φ(k)(z)(σ(n)

B )−1 = Λkq exp

 ∑
j∈Nodd

xjz
j

exp

−2
∑
j∈Nodd

z−j

j

∂

∂xj

 .
Our aim is now to construct a fermionic representation of the infinite dimensional poly-
nomial Lie algebraso(n)∞ = so∞ ⊗ C

(n)(λ) (and actually ofb(n)∞ = b∞ ⊗ C
(n)(λ)) spanned

by the elementsFkij = (−1)jEkij − (−1)iEk−j,−i, where theEkij are the basis ofgl(n)∞ previ-
ously considered. Mimicking the same proof ofTheorem 4.2one can prove indeed that the
following formula:

ρ(Fkij) = 1

k + 1

k∑
l=0

φ
(k−l)
i φ

(l)
−j

defines a representation ofso(n)∞ , which can be linearly extended to a representation ofb(n)∞
by putting

ρ̂(Fkij) =


1
k+1

∑k
l=0 φ

(k−l)
i φ

(l)
−j if i 	= j or i = j > 0

1
k+1

∑k
l=0 φ

(k−l)
i φ

(l)
−j − 1

2Λ
k if i = j < 0

ρ̂(ck) = Λk, k = 0, . . . , n.

This representation turns out to be the direct sum of two representation defined respectively
onV (n)

0 (the even elementsV (n)) and onV (n)
1 (the odd ones). Moreover it can be checked

that the mapσ(n)
B : V (n)

0 � ⊕n
k=0Bk0 (whereBk0 = C(x1, x2, x3, . . .) for all k) is a so(n)∞ -

isomorphism between the representationρ|V0 and the following vertex operator construction
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of the same algebra such that:

∑
i,j∈Z

zi1z
−j
2 Fkij �→ 1

2

1 − z2/z2

1 + z2/z1
(Γ kB(z1, z2) − 1)

where

Γ kB(z1, z2) = (k + 1)Λk exp

 ∑
j∈Nodd

xj(z
j
1 + z

j
2)

exp

−2
∑
j∈Nodd

z
−j
1 − z

−j
2

j

∂

∂xj

 .
In order to construct the polynomial nBKP hierarchy of Hirota bilinear equation we use the
operator

ΩB1 =
n∑
k=0

1

k + 1

k∑
l=0

∑
j∈Z

(−1)jφ(k−l)
j ⊗C(n)(λ) φ

(l)
−j

commuting with the action of the algebrab(n)∞ . The equation onV (n) ⊗C(n)(λ) V
(n)

ΩB1 (τ ⊗C(n)(λ) τ) =
n∑
k=0

1

k + 1

k∑
l=0

(−1)jφ(k−l)
0 (τ) ⊗C(n)(λ) φ

(l)
0 (τ), τ ∈ V0

transferred to⊕n
k=0Bk0 gives rise to the coupled BKP hierarchy

k∑
p=0

∑
j∈Nodd

Sj(2yj)Sj

(
−2

j
Dj

)exp
∑
s∈Nodd

ysDs

 τpτk−p, k = 0, . . . , n. (5.20)

For example the first non trivial ones (which therefore can be viewed as generalization to
theB case of those written by Hirota) are the coefficients ofy6 in the expansion of(5.20):

k∑
p=0

(D6
1 − 5D1D3 − 5D2

3 +D1D5)τpτk−p = 0, k = 0, . . . , n.

Performing the change of variablesw0 = 2∂ log(τ0)
∂x1

andw1 = τi
τ0
i = 1, . . . , n these equa-

tions become

(w0xxxxx + 30w0xw0xxx − 5w0xxy − 30w0xw0y + 60w3
0x + 9w0t)x − 5w0yy = 0

−5w1yy + 180w0xw1xx + 9w1xt + 30w0xxxw1xx + 30w0xw1xxxx + w1xxxxxx
− 30w0xw1xy − 30w0yw1xx − 5w1xxxy = 0

wherex = x1, y = x3, t = x5. Once again from these equations by performing opportune
reduction process (namely eliminating the variablex(2m+1)j) we can obtain the coupled
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Bm soliton equations. In particular form = 1 we get the coupled Kotera–Sawada hierarchy
[22], whose first non trivial equation whenn = 1w0 = 2(log(τ0))xx andw1 = τ1

τ0
is

9w0t + w0xxxxx + 3w0xw0xxx + 3w0w0xxx + 180w2
0w0x = 0

180w0w1xx + 9w1xt + 30w0xxw1xx + 30w0w1xxxx + w1xxxxxx = 0

wherex = x1 andt = x5.
Of course exactly as in the non coupled case these hierarchies can be also obtained by

applying our construction to the Lie “polynomial” algebras (A
(2)
1 )(n). While form = 2 one

obtains the coupledB2 hierarchies, which again whenn = 1 has as first non trivial equation:

(w0xxxxx + 30w0xw0xxx − 5w0xxt − 30w0xw0t + 60w3
0x)x − 5w0tt = 0

−5w1tt + 180w0xw1xx + 30w0xxxw1xx + 30w0xw1xxxx + w1xxxxxx
− 30w0xw1xt − 30w0tw1xx − 5w1xxxt = 0

wherex = x1 andt = x3. Finally, the vertex operator construction provides (as in the case
of the hierarchies of typeA) the multi-soliton solutions for all the hierarchies written above.
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