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Abstract

We give a representation—theoretic interpretation of recent discovered coupled soliton equations
using vertex operators construction of affinization of not simple but quadratic Lie algebras. In this
setup we are able to obtain new integrable hierarchies coupled to each Drinfeld—Soké)@; ¢f,

D hierarchies and to construct their soliton solutions.
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1. Introduction

One of the most important achievement of the representations of the affine Lie algebras
and their groups is surely the Lie theoretical explanation of the Hjmdthailinear approach
to the soliton equations. This beautiful piece of mathematics is the result of an important
sequence of relevant papers, which starts in 1981 with the works of Ba&3], where the
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link between the soliton equations and the infinite dimensional groups has been brought
to the light for the first time. Some years later Date, Jimbo, Kashiwara and [8jva
gave a construction of the Kadomtsev—Petviashvili (KP) and Korteweg—de Vries (KdV)
hierarchies in terms of the vertex operators representating the affine lie algebaad
slp, respectively, while Segal and Wilsdg84] have examined the same equation from
a geometrical point of view. Finally Drinfeld, Sokold4], Kac Peterson and Wakimoto
[10,13,12]have extended this theory to all affine Lie algebras. These results have suggested
to find a similar interpretation for others hierarchies of soliton equations, for example in a
recent work2] Billig has obtained this goal for the sine-Gordon.

The main aim of the present paper is to contribute to the research in this direction. Our
starting point is the following “coupled KdV equations” which appears in many very recent
papers of different authors like Hirota et 8], Sakovich[20], Kakei[14]:

Uy + BVvy + Uy =0

wy + Bvwy + Wiy = 0. (1.1)

The corresponding bilinear Hirota form of these equations (and actually of many others
closely related, among them “coupled KP equatidi2g]) is namely knowr{8] together

with some soliton solutions, but, as far as we know, it is still missing their broader Lie-
theoretic interpretation. In this paper we shall show how these equations are a particular
case of a very wide class of “coupled soliton equations” which can be obtained using the
vertex operator realization of a new class of infinite dimensional Lie algebras. These latter
algebras are the affinization of not simple finite dimensional Lie algebras, which still posses
a symmetric non degenerated ad-invariant bilinear form. Therefore, in our long journey
towards our task we shall be enforced to develop a vertex operator algebras theory for a
class of Lie algebras which are not the affinization of semisimple ones. Nevertheless our
construction will allow us to produce coupled soliton equations corresponding to each of
the Drinfeld—Sokolov and the AKP BKP CKP DKP hierarchies, although for sake of brevity
only the case of the coupled AKP BKP and their reductions to opportune generalizations of
the affine Lie algebraﬂ(ll) A(zl), A(12) anngl) are explicitly examinated in the paper. These
reductions in turn provide a clear explanation of how the coupled KP equations become the
coupled KdV ones by neglecting the dependency from one particular variable. Finally, the
action on the space of representation of the corresponding infinite dimensional groups will
provide, exactly as in the usual case, a class of multi-soliton solutions.

The paper is organized as follows: in the second section we shall describe a class of finite
dimensional Lie algebras known in the literature as polynomial Lie alg¢bBas9]which,
roughly speaking, can be regarded as direct sum of semisimple Lie algebras endowed with
a non canonical Lie bracket. We shall show that these Lie algebras can be constructed in
completely different ways: namely as particular finite dimensional quotients of an infinite
dimensional algebra and as a Wigner contraction of a direct sum of finite dimensional
semisimple Lie algebras, or finally as tensor product between a finite dimensional Lie
algebrgg and a nilpotent commutative ring. Further we shall show how on these Lie algebras
is defined a class of symmetric non degenerated ad-invariant bilinear forms if a such bilinear
form exits org. Inthe next section it will be shown how these latter bilinear forms can be used
to affinize those in general non simple Lie algebras. Then in Sedtiloair vertex operator
algebras construction is presented. Once this result is achieved we can tackle the problem
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to construct the corresponding generalized Hirota bilinear equation and their multisoliton
solution in term ofc-functions. This will be done in the fifth and last section where further
the case of the coupled AKP BKP and their reduction to Lie algebras generalizing the
algebras4(l) A(l) A(Z) anngl) are presented into detalils.

2. The polynomial Lie algebras

The aim of this first section is to present a class of finite dimensional Lie algebras (called
in what follows polynomial Lie algebras to keep the name usually used in the literature, see
for exampleg[15] and[19]) which are going to play a crucial role in the whole paper.

Definition 2.1. For any integer numberlet g®) denote the Lie algebra given by the tensor
product

g®C® (2.1)
between the Lie algebrand the commutative rinG™ = C[A]/(x)**1.

This algebra may be identified with the Lie algebra of polynomial maps feth
in g, hence an element(1) in g(A) can be viewed as the mappitg: C — g, X(1) =
S i_o XkAk, whereXy e g. In this setting the Lie bracket of two elementgifr), X(1) =
Si_o Xkrk andY (1) = S7_o Yirk can be written explicitly as

n k
[X(). Y] =D | Y [ Y jlg | A (2.2)

k=0 \ j=0

where [, -]4 is the Lie bracket defined gn

Observe that if: > 0 theng® fails to be semisimple, becaugen A" is a non trivial
ideal. Nevertheless i admits on it a symmetric ad-invariant non-degenerated bilinear form
(i.e., if g is a quadratic algebra) then roughly speaking this bilinear form is inherited by the
whole Lie algebrg it holds indeed:

Theorem 2.2. Suppose that on g is defined symmetric ad-invariant non-degenerated bilin-
ear form (-, -) 4 then for any set of complex numbers A = {a;} j=o,...n, the bilinear form

(X, Y(V) = (XA, YON D = X" _ga; SLolXi, Yjsi)ge

is a symmetric bilinear, ad-invariant and, if a, # 0, not degenerate form.

(2.3)

Proof. The fact that(2.3) is a bilinear symmetric form follows immediately from the
definition. Let us therefore first prove that the bilinear fai@rB) is ad-invariant. We have
to prove that for any choice of element§r) = > °/_o XiAk, Y(1) = Z?:o Y, Z(A) =
S o Zialin g it holds that

(IX(), YL, Z0NG = (x(b), [Y(), oD%, (2.4)
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Now
n J
XYWL ZOND =3 a; ST X Yk, Zjmi)y
j=0 k=0
n J
= a]Z<Z[X1, Yiul, Zj- k> (2.5)
j=0 k=0 \i=0 9
while
n J
X, YR, ZODY =S a; S (Xe. [¥. Z )y
j=0 k=0
n J Jj—k
=) aj <Xk» (Y7, /k—l]>- (2.6)
j=0 k=0 =0 g

To see that2.4) holds if suffices to observe that bath5) and (2.6fan be written as

(XA, YOI ZONY = Xm0 Sty iy ism s (X0 Y1) Zis)g

(XD 1Y), ZWDY = 0@ Yiystpsiam X [V Zig))g

and that the Eq(2.4) immediately follows using the ad-invariance of the bilinear form
(-, )g- It remains to show that it is non-degenerated. We have to check tki@t)ife g™ is

such that X (1), Y(A)) @ _ 0 for everyY() € g™ thenX(1) = 0. Indeed sinc& (1) has
the formX (1) = Z/ 0X A/ its inner product with an element of the forrp(1) = Y, A"
will be:

(X(1), Y00 = an(Xo. Yu)g 2.7)

and sinceY, can be chosen arbitrarily i, (-, -)4 is non degenerated on it aag # 0,

(X(A), Y (M) 4 (”) = 0 implies thatXo = 0. Then by pairingX (1) with an element of the
typeY,—1(») = ¥,—12" "1 we get:

(XA, YuotONY) = @, (X1, Yu_1)g

and then agaifXx (1), Yn_l(A))EQZ) = 0 implies X1 = 0. Repeating: times this argument
we obtain step by step that each coeffici®pis zero, proving the proposition. [

Remark 2.3. If we denote byo the matrix representation of the bilinear fotm:), defined
on g then it is immediately to show that the bilinear foKm~)fZ) defined ong™ has the
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matrix form:
aow a1 AW - - Ap_10 Ay
alw  aw cooago 0
arw - 0 0
W = : | (2.8)
ap_1wayeo 0 .- 0 0
a0 0 0 - O 0

The just proved proposition shows that the polynomial Lie algghtavheng is semisim-
ple, are non trivial (non abelian or semisimple) examples of quadratic Lie algebrasi.e., finite
dimensional Lie algebras which possess a symmetric ad-invariant, non degenerated bilin-
ear form[16,17] The very definition of the Lie algebrg® suggests a way to construct
it in a form better suited for the purposes we have in mind. More precisely the following
proposition allows us to obtain a matrix realizationgé?.

Proposition 2.4. The map p given by
o1 CMW(A) — End(CD)

olci ® AY) > ciAl (2.9)
where A is the (n + 1) x (n + 1) matrix given by
n
A=Y e (2.10)
i=0

and
1 ifi=j k=r
(eij)er = { 0 otherwise
is a ring homomorphism.

Now using together the definition gf”) algebra andProposition 2.4ve get a matrix
representation of(®).

Theorem 2.5. IfI1 : g —> Aut(C™) for some m is a true representation of g then the map

T : g™ > Aut(CmO+D)

given by
(Xo) 0 00 O 0
rn(x;) MH(Xpe) 0 O 0 0
n : ' 0 0
M(Xo.....Xx) =Y XAl =
i=0
I(X,—1) 0 e m(Xo) O
H(Xn) H(anl) """ H(Xl) H(XO)

(2.11)

is a true representation of g(").
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Proof. Since we have constructed a representatiofi(@f') we have a representation of
g ® C(A") given by:

I®p:g®CEH") — End(C™") ® End(C"*1) = End(C"**D)
To bring it ong®™ directly we have only to use the isomorphigm g®) = g ® C(1):

Previously in this section we have shown that fossesses an ad-invariant bilinear non
degenerate form this gives rise a ad-invariant bilinear non degenerate fogf¥ ot is
therefore natural to wonder if this latter form has a natural expression in our matrix repre-
sentation. This is actually the case. We have indeed for instanceayher for all k that:

(X0, ..» Xn), (Yo, ..., Y ) = tr(fT(Xo, ..., X)) [1(Yo, ..., Y,)C™)  (2.12)
whereC® is them(n + 1) x m(n + 1) matrix:

niilﬂm %Hm %]Im %]Im ]Im

1 1 1 1
0 mﬂm E]Im A é]Im il[m
0 o .o,

ct —
0

1 1

0 il 3m
o o0 0 - 0 -hI,
i.e. Cgf)erk = Hﬁﬂm, wherel,, denotes thern x m identity matrix,p =0, ...,n —k

andk =0, ..., n while C{) =0if g < p.

3. The affine Lie algebras

In the previous section we have constructed a class of non semisimple Lie algebras which
posses an ad-invariant non degenerate symmetric bilinear form. This their peculiar property
suggests to investigate their affinization. Our construction will differ only in few details
from that usually considered in the literature (see for example[K@ig.

Let us consider a polynomial Lie algehs&) whereg is semisimple and let denote by
L(g™) the corresponding loop algebra:

L) = g™ @c Cr, 171 (3.1)

whereC(z, 1) is the algebra of Laurent polynomials in a complex variabRemember
that on it is defined an infinite complex Lie algebra bracket:
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[X@pY®q=[X.YI®ps (p.qeCltr )XY eg")

Then our “generalized affine Lie algebra” denotediy™) will be obtained by adding to
L(g™) n + 1 “central charges” and a “derivatiod” More precisely the Lie algebu(g?)
is the vector space

L") =L@ &Y eCc o Cd (3.2)
i=0
with Lie bracket defined as

n n
(Xo,.... X)) @1’ ® (chi@ud> ,(Yo,.... V)@@ <Zvilcl-@uld>]

i=0 i=0

= [(Xo, ..., X,), Yo, ..., V)] ®@ 1714
+(nq(Yo. ... Ya) ® 11 — u'p(Xo. ... X,) @ 17)

+p8p l]zzaj<xl j’ gcz (3.3)

i=0 j=0

Observe that the elemeditacts as derivation ofi(g?) and that the Jacobi identity for this

Lie bracket is granted from the ad-invariance of the bilinear f(2m8) on g, therefore

the elements; i = 1,...,n play the role ofn + 1 linear independent central charges.
Moreover it is a standard fact that this ad-invariant bilinear form can be extended to a
symmetric ad-invariant bilinear form, )A) on the whole Lie algebra‘,(g(")) by setting

(X(0), Y = Res(<d’g§’>, Y(t)> ) VX(0), Y(f) € L(g™)
(d, )" =0 (3.4)
(c,-,d)fz)tzl (ci,c])() =04j=0,...,n,

where the Res is the linear functional®fz, 1) defined by the properties Rest) = 1;
Res%’ = 0). For our purposes the most important case is when our finite dimensional Lie
algebrgyis just a quadratic algebra but actually a complex semisimple Lie algebra. We want
indeed in this case construct a vertex operator representation of the Lie aﬁ‘(jg%?)a The

first step in this directiof9,10] is to consider a Chevalley basisgfdapted to the Cartan
decomposition of our semisimple complex Lie algepra

g=b®> ®g, 08, ={Xe€g|[H X]=a(H)XVH eb) (3.5)
aeA

wherep is an once for ever fixed Cartan subalgebrag,cind A is the corresponding the
root system. More precisely IT = {1, ..., «,} is a set of simple roots, then a Chevalley
basis is the set

{Hotls cee Har} U {Xa}aEA (36)
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where the elementd,,, ..., Hy,} are the dual of the simple roots and therefore sjpan
and for anyx in AX,, is a nhon trivial elemenk, in g, such that

Hy = [Xo. X_o)] [H Xo]=a(H)Xy VHeb,i=1...,r

This basis in turn allows us to define a basis for the whole Lie algébrand its affinization
L(g™). They will be namely respectively fg)

{(HY . ... HE}U{Xleen k=0,....n 3.7)
and forZ(g®™)
{HE, @™, ... HE @™} U(XE @™ )yen k=0,....n.mi €
0, -1 Cn (3.8)
d.

The corresponding Lie bracket are gt
[H({((," Hé,v] = O
[Hk Xét] — Dl(Hollcl.)X{;—i_J if j +k <n
o 0 otherwise (3.9)
(X, Xf] _ J N, ,B)X(H/6 ifj+k<nande+peA
0 otherwise

with opportune integer numbeng(«, 8). While for the Lie affine algebri‘i(g(”)) they are
[H(i(; &® tmi’ HO{S ® tms] Hk H] 8_”11 msCk+j
oz(Ho,l)Xkﬂ ® it if j 4k <n

[HE: @™, X} @ o] =
' otherwise

N(cx ﬂ)x’;jg ® (Matmg
2088y —mpCik if j+k < nanda
+peA
otherwise
=mX
=0

[Xk ® 1", X} @ "]

[d, X ® "]
[ci, X]

® M VX e g(”)
VX € L(g™), j=0,...,n.
(3.10)

The importance of this basis in what follows is due to the fact that it allows us to define
some generating series through which our searched vertex operators are constructed. These
generating series are defined by the formulg<,6]):

Hgi (Z) = ZneZ H(i{i ® tnz—l—n

X’&i(z) =D L7 X](;i 'z (3.12)
9. = 4
27 dz

wherez is a formal variable. Using these formal operators is immediate to prove
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Lemma 3.1. The Lie brackets (3.10)for the affine algebra Zl(g(”)) are equivalent to.
[HE (22), Hi, (22)] = (HE, Hi) % (0.,0)(21 — 22)ens s

{ a(H)XE (2281 —22) k+j<n

[HE (21), X4(z2)] _
0 otherwise

" J N, B)X, (z2)8(z1 — 22) — (X5, XD (0,0)(c1 — z2)ens k+j <n
[Xg(z2), Xp(z2)] 0 otherwise

[d, X(2)] —(z3: +1)X(z)  ¥X egh
[ci, X(2)] =0 VX(z) € L(g™), i=0,..., n

where §(z1 — z2) = le Y oneZ z—,zl,
Until now we did not impose any restriction on the subset of complex numbers

{ao, ..., a,}, which appear in the definition of the bilinear fo(3), but in view of their

realization as vertex operator algebra on “generalized” Fock spaces we need to suppose that

everya is different from zero which, without loss of generality boils down toget 1

for everyk.

4. Vertex algebras representations

Now we can describe the construction of the vertex operators representation of our
Lie algebrasZ(g®) in the case whep is a simple complex Lie algebra. Using the same
constructions of the first section it can be easily proved that the Lie algié(tgl(é)) is
isomorph to the Lie algebra tensor product:

L(g™) ~ (L(g) ® C™M(3)) x Cd (4.1)

WhereZ(g) denotes as usu§l O] the central extension of the loop algelfég) = g ®

C(t, r~1) (which is of course a one codimensional subalgebra of the affine Lie algebra
L(g)); andd acts as the derivatioq% on C(z, ~1) while its action on the other factors is
trivial. This equivalence suggests of course a way to obtain a generalized vertex operators
representation of(g™), namely ifI" : £(g) — End(V) is the restriction ta(g) of a vertex
operator representation frfﬁ(g) andp : C®(1) — End(C"*1) is the representatiof2.11)

of C™(x) then our “vertex operators representations” will be up the derivation “the tensor
product” of the two:

I : L(g™) — End(V ® C"tY)
(X ® p(x)) = I'(X) ® p(p(R)) (4.2)
nd)— D®1.

whereD coincides with the action of the derivation B(g) on End{’). Indeed we have
only to check thatfI(X ® p(1)), [T(D ® 1)] = I[T1([X ® p(A), [T(D ® 1)]) which follows
immediately from ["(X) ® p(p(X)), D ® 1] = [I'(X), D] ® p(p(A)). Since this is the main
object of the present work let us explain into details this construction when the vertex
representatiod” of Z‘(g) is the basic homogeneous representaftién11,6]
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More precisely leD be the root lattice associated with the simple Lie algghrahich
we suppose to be of rarlkand letC(Q) be its group algebra, i.e., the algebra with basis
e“a € Q and multiplication:

the affinization of), and finally byS the symmetric algebra over the sp§c€ = Zj<0 h®

t/ (following the literature we shall writéf+/ in place of H ® +/). Then we can define a
representatiom of h on Vg = S ® C(Q) by settingr = 71 ® 7> wheremr; acts onS as

m1(co) =1
HA S ifn <0 (4.3)
n Sy —
w1 (H")(AF) = {nﬁn,s(HM)g ifn>0

while 2 act on Q) simply by
m2(K) =0, mo(Ht")e" = 8y 0{a|H)ge”. (4.4)

Let now setH, = a” ® 1, wherea? is the dual element if of « a(n) = n(H,t"), H, =
7(Ht"), ande* the operator oV of multiplication by 1® e*. Then let us consider the
following End(Vp)-valued fields:

H(Z) ZneZ an—n—l
Fa(Z) Zk 0 (exp (Zn>l

whereb, acts onVy as

) (exp(Sm0 ")) ez, (4.5)

by(s ® €¥) = e(a, B)s ® e*

with € : 0 — {£} is a two-cocycle[(L1]) such that
e(a, Be(B, o) = (—1)@P+EBIA),

Using these notations arictheorem 2.5ve can prove.

Theorem4.1. Let Vg = @ _oVo bethedirect sum of n + Lcopies of Vg then the following
End(VéV)-valuedﬁelds:
cr = cAk, k=0,...,n, ceC
Hy(2) = 3 ez a(m)z™" 1A = Hy(2) A, k=
TES I S [ SIS P PO
=Tu(z)A*, k=0,...,n
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and the last formula of (4.2) define a vertex operator representation of the Lie algebra
L(g) ® C(X), where the matrix A is given by Eq. (2.10)

Proof. As usual we need only to check that our generating series satisfies the right OPE.
But this can be easily done, keeping in mind the OPE of the figlds (se€[10,11). We
have indeed:

, . _ (HolHg) .
HYQHj(w) = Ho(e)Hyw)akal = § = Gz ot e AT =
otherwise
) 4.7)
: : ~ A VA ik j<n
H' Q)W) = HOLE@ A AT = { = T J =
0 otherwise
In similar way
FEQIw) = L@ rpw)akal =0 ifa+B¢A
ks i g L L e pEEE AR k4 j<n .
ry (z)Fﬁ(w) = I () Tpg(w)A* AT = { 0 z otherwise: fa+peA
, , ~ e, —or) L 4 L) Ak+T i gy
F;(Z)Fia(u}) — Fu(Z)[La(Z)AkAJ _ { e(o, —a) G—w)? + = Tk+j<n
otherwise
(4.8)
O

4.1. Generalized boson—fermion correspondence

In the next section we shall apply the theory of Kac Wakinj&®] on order to obtain a
class of coupled soliton equations. Although this theory may be implemented using directly
the vertex operators given iheorem 4.leven in this case there exists a generalized
fermionic construction which is in our opinion worth to be presented at least in the case in
which the simple Lie algebrgis of typeA.

Letusfirstconsiderthe direct sumoft 1 copies of infinite dimensional wedge algebras:

FO — g o F (4.9)

where the space® withi = 0, ..., n are isomorph to the infinite wedge spacgenerated
by the semi-infinite monomials

ilAizA"'Aij/\"'

where the; are integers such that
i1 >ip>i3 and i;=i;_1—1 fornbigenough

(see[10] for more details). Every spadé has a charge decomposition
F'=®pezF!

where F! is the linear space spanned by all semi-infinite monomials’invhich differ
from the vector
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mi=mAm—1Am—2A--.)

called the vacuum vector of chargein F' only at finite number of places. Obviously the
same decomposition exists for the whole sp&é8 as F") = @,,.7 F") where F(") =
®F_oFL,.

On EndF™) we define the following operators’’ andy® (k = 0,....n.i e N):

I/ffk)(QlAizA---)°,~-~,QM£2A~-~)"}~--,(£1/\12A~--)”)
=Ef:é(%ewk,l((il/\12"')0,~--7(L’1/\12/\"')jwua(il/\iz/\“')")
=(09’0 9(‘(»01'(!.1/\!.2/\"')0)]{7"'9(Wi@1/\£.2/\"')j)j+ka~~-7

H’_/k
(Wil Adp - R . (4.10)

U OUnig a0 migh Y, A ig A

= Yo Yieri(ig Adg )0, . g Adg A (i Adg A )T

=(0..... 0. (Yflig Adp A )0, (i A A ) )R
(WrGig Aip AL )T R)m)

where the action of the operataps andwj is given by the formuldl0]:

. w0 if j =i, for somes
Yilla Aig A )") = {(_1)S@l/\"'l\i:*n/\iiﬁrl/\“')m ifi, > j> i1
(4.11)
if j £ i foralls
NG A NG A i =

i . 0
lp"- (Ql NIg A= ) ) = { (_1).v+l(£'l A
A simple computation shows that the operators defined above satisfies the equations

0., *0) | #0) @) _ fSu A i j 4k <n 4.12
Vil AV = {O otherwise

defining a generalized polynomial Clifford algebra of typewhich in what follows will

be denoted by"L(). This name may be justified observing that the same algebra can be
constructed by performing a universal algebraic construction starting from an opportune
infinite dimensional vector space endowed with a symmetric bilinear form related to the
bilinear form(2.3) of g™, It is clear that the vector

0)=(0A-1A-2A--°0,...,0
N——

n

is a cyclic vector with respect the action 6L (i.e., F() = CL(|0))) which satisfies
the relations

v =0 forj<o.  y®o =0 forj>0, k=0...n

Moreover it can be also checked that the operaﬁﬁ‘) is the adjoint of the operataﬁ,(k)
with respect to the bilinear (non degenerated but not positive definite) forA{"dmiven
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by
(g Aig A0 Gy Mg A=Y i Ao A )0 o (i A A=) p
n l
= > Y (@ nip ANl AdpA--)T™) (4.13)
=0 m=0

where (-|-) denote the Hermitian form of for which the canonical basis fdr is or-
thonormal. The more significant consequence of the equa®tg) are the following
commutation relations:
(m+p)
O xm=D  (P)y _ ) Sk ifm+p<n
v ™ 7l = {0 otherwise (4.14)
[y Oy )y _ ~8uy P itm 4 p <n '
b Tk 0 otherwise

which can be checked as follows
[wl(l)w}'f(m_l)’ 1//’(([’)] — I//l(l)w;’f(m_l)w]gp) w(l’)w(l)w
+ wl(l) Ip](cp) w;‘(m_l)

«(m—I) (4 12)

1//(l) w*(m 1) w(!’)

m— m— 412 m _
— I//l(l)(wjﬁ( l)w}({ﬁ) + w]({[’)wj‘( 1))( e )Iﬂ,(l)5jkA +p—I

_ (Skjwl('"+p) ifm+p=<n
0 otherwise

while the similar proof for the second one is left to the reader.

The importance of equatiori4.14)is due to the fact that can be used to define a repre-
sentation of a “polynomial” generalization of the infinite dimensional Lie algghyai.e.,
usingDefinition 2.10f the Lie algebra:

gl® =gl ® CM() (4.15)

Therefore a moment'’s reflection shows tg@g} is the Lie algebra given by the linear span
of the basis{Ef.f/}j,,-eZ’k:o » With Lie brackets given by the formulas:

,,,,,

k- o .

[E ,E‘[ ] = BJ.ZEir;:_Y_61'mElj+Y Ifk+slfn
o 0 otherwise
Similarly, starting from equationg}.12), one can view the polynomial Clifford algebra

CL™ as the tensor productZ ® C™(1).
The representation of the Lie aIgetyf@g) on F( is given as follows.

(4.16)

Theorem 4.2. The map ¥ g[(”) — End(F™) given by:

W(E) = me"‘ Yy ijez. k=0,....n (4.17)
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defines a representation ¥ of 9[(:0) on F®),

Proof. Using formulag4.14)we have fotk + s < n:

k K
1 1 )k 5—
W (ED. WEL = gy [ 2o v
p=0 q=0
11 K& en) ) )
T k+1ls+1 DDA I T e
p=04¢=0
1 S— k
HlHlZZ([w(" Plys) 0=y (@)
p=0¢=0
1 (k=p)p, #(p) , (s=4)., %(q)
+— ZZ(V/ [V “n )
k+1s+1 pr Yy
1 (k+5—9) , +(q) _ (s—q), +(k-+q)
= ZZ( ;Y — Sy YY)
s—i—lk—i—lp_ 0420
1§ ) uig) LS 6 k)
= szH_lZIﬁ,- Vo _5mim Z(% ‘/fj )
q=0 q=0

= W (Er") — 8miW(E[) = W((EL, E},))

since it is easily checked thatl; Zq oV q)w*(k+q) W(Ek“) and 1 > a0

wk“ Dy W(EXT). While if k+s>n a similar computation gives¥{(E};),
w(E],)] = 0aswanted. [

Note that, while the action of GP) interchanges the charges, every subspa‘i;é,{é’sis left
invariant by the representatiah. Further these latter spaces are indecomposable s&that
is the direct sum of its restrictions aff".

We are actually also interested in the corresponding group representation, despite the fact
thatg[gg) = Lie(GL« X gl,,) the exponential map of this algebra lies in a bigger group,
which contains G L x gl.) as a proper subgrof8].

Proposition 4.3. Let Ngé) be the following subset of g[gé) regarded as associative ring:
ND = (I + X|X € gl, ® \C" D)}
then

1. Néo) is a group with respect the ring’s product.
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2. The group G% = GLy X Ngé) is the littlest group which contains the image of the
exponential map on g[gg).

Proof.

1. Since it is obvious that the seirgé) is closed with respect to the ring’s product it is
enough to show that it contains the inverse of any its element. But this is simple a matter
of computation we have indeed that

(I +X) (i(-l)x") =1

k=0

with S_(~1)X* which belongs tav).

2. The second statement follows immediately once one recognizes thatis the expo-
nential group of the Lie algebrgl., [10] and thatgl®) = gl., x n® wheren® is the
Lie algebragly, ® AC*~D(0). O

The representatio can be exponentiated to the Lie groGé’Q. Namely if g is an
element ofGé’Q of the formg = expXo whereXy belongs tgyl,, ® 1 =~ gl then we have
the natural extension of the usual c§k@]

W) (g Aip A0 g A A ) (g A A )"
= ((8lig Aig A=) (glig Adp A )Y (8lig Mg A )Y (4.18)
where

N

gl nip- Y= > det@hZ=)(jLAjz-)

J1>j2>

While if g is an element otf}f)’é) of the formg = expX; with X; which belongs t@l., ® A
with £ > 0 then the action becomes:

W(expX)((ig Adg- )0 g Aig A ) (g A A o))

= (g Aig A g A AT i A A )
[r/] '
+ (Xelig Aip A )OF L ijg(gwm---)r—kq
=0 T
WK nka) "
x Z —X{ig NigA - (4.19)
g=0 T

where we have denoted with]the integer part of..
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It is still possible to construct a bosonization of the representakicf g((gg), which
generalize to the our contest that already known in the literdfi@rd 1,13] To achieve
this task we have first to extend the representatiiiom gi®) to %) = a., ® C®, this
requires to get rid from anomalies to modify our representa#idsy putting

1y dEDy 0 ey L ori= 50
— h . jorl = j >
W(ER) = LR o e L (4.20)
Next we must define the subalgef& of a%) spanned by the elements
sf-‘ = ZE]]‘-,HI-, andc*, k=0,....n
JEZ
whose Lie brackets are
; ki itk <
k1 _ ) Pdp,—gC fj+k<n
[sp- 5q] = {0 otherwise (4.21)

and which can be therefore viewed as a generalized “Heisenberg Lie algebra”. Using the
representation this algebra is given by the free bosonic fiedtgs

k—1) (0 o
ok = 2k o v Y ifjezio), k=0.....n
K k—1) (D) <~k k1), (I
o = 1 o im0 W O T o o v 0, k=0, 0

Now following Kac in[10] we introduce the bosonic Fock spaB&) given by the direct

(4.22)

of n + 1 copies of the usual bosonic Fock space: C[x1, x2, ... q, ¢~ 1]
B — & B; (4.23)
i=0

whereB;i =0, ..., n are copies oB. For our purposes itis also useful to look at this space
as the tensor product between the Fock sgaard an: + 1 dimensional complex space:

B™ — p ® Cln+1) (4.24)
and to consider its decomposition in “charged subspaces”:
B = @ B,, By = q"C[x1, x2,...] ® C". (4.25)
meZ

On it is defined the following representati@ﬁ(") of the generalized Heisenberg algebra
s(") where we have normalizedto 1:

) 9

B (sh) = gor ® AF
()

rB sk ) = mx, ® Ak

},ifm>0,k=0,...,n
rB(")(slé)zq%@Ak, k=0,...,n.

(4.26)

It is straightforward to see that the usual isomorphism efs(-moduless : F ~ B (see
[10]) can be extended tos”)-moduless” : F) ~ B(" simply by taking the direct sum
of n 4+ 1 copies of the isomorphism
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To compute the action of the isomorphisnis useful to introduce the generating series
of the fermionic fields:

0@ =S"yW, O =S yWI k=0....n (4.27)

JEZ JeZ
and also the corresponding bosonic operators:
k k2" k K 2
1"+(z)=Zan7, r_(z)zza_n? k=0,...,n. (4.28)
n>1 n>1
Which can be also written as:
Ho="Ces o= ‘xeat (4.29)
! n>1 n axn 7 - n>1 n ’ . .

Using these operators we have indeed the

Theorem 4.4. For everyk =0, ..., n we have:

I/,(k)(z) = Z“éqFf(Z)Ff(Z)_l

y0() = gLz rk (2) Lk (z). (4.30)

Proof. Letus prove only the first of equatiof 30)since a completely similar construction
works for the second ones. From the E@s22) and (4.27)ve obtain that

YtE) ifitk <n
0 otherwise

wywwn={

—dy gy itk <n
0 otherwise

wﬁw%m={

now using the map () we can transport these relationsB®), for j > 0 we have

o[, YORNEM) 1 = [ ® 4%, 0y ()01

{Zj(,(n)1/,(k+i)(z)(a(n))—l ifi+k<n

0 otherwise

while for j negative
oak, yD(2)(o") ™t = [x; ® A%, oMy (2)(0™) 1]

{ %jo(”)w(k“)(z)(o(”))’l ifi+k<n

0 otherwise
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Using these equations, the fact tfmsgf) can be written asfjA" and Lemma 14.5 of10]
we can now conclude that the operabd’l‘)x/rﬁk)(o(”))‘l brings the subspacB!” in the
subspacé}gj}rl for everym and it is of the form

oMy B (M) = €, (gl (2)

with
r‘y=<exp| > z/xj|exp[ > ——| p ® A
=1 =1 /

while the same argument used in the proof of Theorem 14.]00jhshows thatC,,(z) =
Zm+1_ O

Theorem 4.5. The generating series for the representation ¥ (4.17)of glg’é) is

" 1
J k
212 lI/E == —I"(z1,z 4.31
PDESHCE (2) gt (@.31)
i,je
where
k pP_ D ZIP - Zz_p 9 k
I'(z1,z2) = (k+ 1) exp Z(Zl —25)xp, | €exp 27— AX
=1 P p oxp
(4.32)
Proof. We observe that fror¢.27)follows
1
> lezj‘I’(El,) = — Z y= l)(zmﬁ O(z2)
k+1
i,jJeZ
substituting(4.30)we get
k
>z w(El) = Z 0 g e P ) g2, O T (1) A ).
i,jeZ =0

Since it holdq10] for every 0< [ < k that

M z) ™ (z2) ™ = M)t (za) ™ 1( Z)_

the previous equation using aléb29)becomes
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2 1 k n—k+l
(1—) Y e z
71 k+1
=0 s=0
n—k+l1
X Z exp Z(zlxp) e— 1+“Zexp Z szp eltrr
p=1 p>1
n—k+l n—I —p
21 7(3/9x,) —zy " (9/9x))
I 1 DOE ALl IR S i CLD P
s= p>1 p r=0 p>1 p
and finally

m -1
een(3) (-3)

-p_ =D
21 —2 d

X exp E(Zf—zg)xp exp E ¥8— AF O
p=1 p>1 P *p

5. Coupled Hirota bilinear equations

The aim of this section is to derive from the vertex operator algebras constructed in
the previous one the corresponding hierarchies of Hirota bilinear equations. The key link
to connect our representations with the corresponding bilinear equations are opportune
homogeneous Casimir operators acting on particular quotient of tensor products of rep-
resentations. The starting point is to observe that the representatigf¢ of g[g'g) and
CL™ presented in the previous section can be viewed as tensor product between an
infinite dimensional spac& and the spac&€”*! where £(g) and d (or gl,, and CL)
and the polynomial ringC® (1) respectively act (as already pointed out in E4.1)
for the algebrag™). Moreover since it is easily to see th@f ! asC(x)-module is
isomorph toC()) itself, we can decompose our representation’s space as the tensor
product:

V) = v e Ch@). (5.1)

This in turn beingV ® C™ (i) aC (x)-module with trivial action on the first factor allow
us to construct g (gl andCL ™) representation on the “modified tensor product”

(V ® C(1) ®cigy (V ® CP()), (52)

these will be the space where our generalized Hirota equations will live. Since in a
similar way also the algebrag™, gl?), and CL" are C")(1)-modules we may con-
sider the following elements af®” @ ;) 8, g1 ®cw g and CLY ®cw CL®,
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respectively:

§2; = Z Z Z(efj’ ® k) ®cm() (e(,i)a ® Al

k, =00 AU{0} ieZ

— zn: Y S @) @ik

k=—0aecAU{0} icZ

and
2= 3 3050 ecny ] 030 =3 T 0 v 0
k,1=0 ]GZ k=0 jGZ

which act naturally on the spact @ C™(1)) ® ey (V @ C(1)).

Proposition 5.1. The operators 22 and $21 commute with the action on V. @ C® (1) of g

and g[gé), respectively.

Proof. The thesis follows by straightforward computation. For example let us congider
and letX ® A/ an homogeneous elementg$?) then we have indeed:

[ n
Y Yoy xen

| k=—0aeAU{0} ieZ

- En: > Z(efj)@)e(ig),x @+ — 0

| k=—0acAU{0} ieZ

[£22, X ® M]

because i_ o> weauio) 2icz ) @ ¥ is Casimir operator of (g). Similar computa-

—

tions proves the statement for the operatar [

5.1. Coupled KP hierarchies

Let us compute these equations explicitly starting with the cag(fo@f
SinceF™ (1) @y F™(1) is agllh-module the Casimir operate?; commutes with

action of any element of this algebra and therefore with each elememgﬁ. But thisin
turn observing that

n k "
Z Z Z ﬁll(lﬁj ® M) ®cmpy (W @) = Z Z(‘P./ 2 Y@M =2

k=0 1=0 jeZ k=0 jeZ
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says that any vectar= (o, ..., t,) of the orbit ofGLSQ,)(|0), 0, ..., 0) satisfies the equa-

tion
n n k 1 ) 0
PIDIPIP D T 1‘”5- (tp) ®cwpy ¥j " (zg) = 0. (5.3)

P.q=0 k=0 [=0 jeZ
ptq=n

Moreover the argument of Theorem 14.1110] proves
Lemma 5.2. The orbit of GLgé) |0) is the set of all nonzero solutions t € F(()”) of Eq. (5.3).

Our generalized Hirota bilinear equations will be the bosonic version (BEg). For the
convenience of the reader let us briefly outline their explicit construction despite to the fact
that this is up to some minor changes quite standard. To apply t®&E)the isomorphism
o™ we have to write it in terms of®)(z) andy*®)(z) as

n n k
1
0 k—I 1
z--term of E E E ml/f( )(Z)Tp X () I/f*()(Z)Tq =0. (5.4)
;fi—qng(:: k=0 [=0

Then its bosonizated form is

n n k _i

j z7/ [ 0 0

res0 ) ) D> | exp) x| |exp—) ( o a)
p4=0 k=0 1=0 =1 =1 Yio 0%
p+asn

x T,(x)74(x") = 0. (5.5)
Introducing the new variables
xj =505+, y= 50— x))
Eqg.(5.5)becomes:
n n k ) Z_j 9
res—o > Y>> |exp2> iy | | exp—> — (8)
.4=0 k=0 =0 =1 =1 ) N
p+q=n
X Tp(x + y)rg(x — y) = 0.

This latter equation can be easily written in terms of elementary Schur polyndipjadsN
as:

k
> U Si29)S1a(=0)Tp( + T plx —y) =0, k=0.....n (5.6)
p=0 ;>0

where as usudly means(a)i,l, 35 35%: - ) Then introducing the Hirota bilinear dif-

ferentiation by:

a 0

777"" f(x1+ul7x2+u27"')
ouq1 ouo

P(D1, Dy,...)fge =P (

x g(x1 —u1, x2 —up,...)
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and using the Taylor formula

P(éy)fp(x + y)fq(x —-y) = P(éu)fp(x +y+ ”)fq(x —y—- “)|u:0

= P(3,) expz yji— o) Tp(x + u)ty(x — u)l,_os

jz1
we can write(5.6)in the Hirota bilinear form:
k
D> Si2y)Sj1a(=D) | exp)_yiDs | Tprp. k=0,....n. (5.7)
p=0 ;>0 s>1
(Here again as usud stands for 01, 3Dz, 3D, ..., 0)). Expanding5.7) as a multiple

Taylor series in the variables, y», ... we obtain that each coefficient of the series must
vanish giving arise to a hierarchy in an infinite number of non linear partial differential
equations in the Hirota bilinear form, which of course contains the celebrated KP hier-

archy. Observe thaP(D1, ..., Dy) Zﬁ:o 7,Tk—p = 0 identically for any odd monomial
P(D1, ..., Dy) inthe Hirota operator®; becaus@’;:0 TpTh—p = Zl;:o 74— pTp for any

k=0,...,n. Therefore the first non trivial coupled Hirota equations are:
(D‘l1 + 3D% —4D1D3)tot0 =0
(Dll1 + 3D% —4D1D3)tot1 =0

(5.8)
(D‘ll+3D2 4D1D3)(Zp 0TpTh— p)

(D} +3D3 — 4D1D3)(Ep 0TpTn—p) =

To write this equations in the “soliton variables” we perform the change of variables

2a ';’)?(TO) u; = & which generalizes to our case those proposed by Hirota et [@].ifn
these new varlaf)les equatiofts8) read

%MOyy — (uor — gMOMOX - %MOX)CX)X =0
Ukxxnx — Qi + 3Mkyy + Guougyx + <Zl;;% 2ujxu(kfj)t + 2thl"(kfj)x (5.9)
=3t jyth (e~ j)y — BUOU julh (k—j)x — 20 joxcxld (k—j)x — St juxth(k— jxx
- 2ujxu(k_j)xxx) =0, k=1...,n
wherex = x1, y = x2 andt = x3. The vertex operator construction offers a canonical way
to produce a class of generalized soliton solutions for these equations. Indeed for what
said above the grouG(”) brings solutions into solutions. Therefore, in particular, we can
construct non trivial solutions (calléd soliton solution) of our hierarchies by acting with
the polynomial vertex operators on the trivial solution@L. . ., 0)". This requires to write
explicitly a formula for the composition of the action/@f/ertex operators on the spabB@).
But using the induction oi¥ and the identity expf ijl x?/j) = 1 — x this formula writ-

tenin components, for a generic elememnt (. ., 7,,) of B™ and for some indeterminates

u{ u{v,vl,.. UNJ—O , n becomes
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n

1
ki kj .
H Z ruy, vj")Ak-/ (to(x1, x2, .. ), ooy Tty x2, .. )T

j=N \k;=0 m

(u(kj) _ u(ki))(v(kj) . v(ki))

_ j i J i
Z H (ugkj) _ vl(ki))(vi'kj) _ u[(ki))

..... kpy.s=0 l<l<J<N
k1+ Ak +s=m

N N
< [ exp> " Sy — @y | x (...,xr—iz«u;")-f W), )
=1

r>11=1

m=0,...,n.

(5.10)

First of all this formula shows that any matfix;_, I'(u*, v*) A* acts as nilpotent operator,
it hold indeed

Lemma 5.3. For every s, 0 < s < n we have that
N
(Z @k, k)A") ©,....,7.,0,..)T=0 (5.11)

foreveryt, € C(x1, x2, .. .) and every choice of u* and v, if and only if s > [Hi Vl'gs("_r)}
where [x] denotes the integer part of x.
Moreover the mth component of the vector (3} _g Ik, v9)A%, ..., 7.,0,..) van-

. . . . . 14+/T+80n—
ishes identically if and only if s > [#} .

Proof. If we set in formula(5.10)ul;j = uki andv];j = v%i then it is easily to check that
oo Tk, vk A%)%(0, ..., 7, 0,...)T = Oforeveryr, € C(x1, x2, . ..) and every choice
of u%i andvi if and only if k; = k; for somek; andk; in each set of non positive integers
{k1, ..., ks} which appears in the right hand ¢5.10) Or in other words if and only if
any set of non negative integeffs;, ..., k;} such thaty}_, k; = n — r contains at least
two elements which coincide. Suppose tht, . . ., k;} is a sequence with all elements
distinct such thab"}_, k; = n —r, then, since the sequence ofion negative pairwise
distinct integers whose sum is the smallest is obviofBl\, ..., N}, we must have that
n—r=30_1k>Y1qi =1 Therefore Eq(5.11)is identically satisfied only and

only if s > {”7 Vlzs(”‘r)} A completely similar argument proves the second part of the
lemma. O
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Using the statement of the lemma we can write the exponential map of an element of the
type > _o ok (X, v*) as

n [(1++/1+8k)/2] 1 j
oo Tareh) =X (0T LY [
k=0 =0 j=0 s1-ts =k i=1

Therefore from thé.emma 5.Zollows that the components of ahsoliton solution of the
polynomial KP hierarchy is

Tod kol bl bl ()
n [(1++/1+8k)/2] 1 j
= N Ak > A > JJes . ve) | (L0....,0)7. (5.12)
k=0 j=0 14+ =k i=1

In particular an 1-soliton solution (again written in component) is

(Tao ..... Oy UQy-es Up,V0,...,Upn (x))m

[(1++/1+8k)/2] 1

_ Z Z ﬁa H (usi - ui[)(vsi - US/)

I _ —
j=0 I sitrsj=ki=1  O<i<i<j (1t = vg) (v = )

J
x (expd > =i )x |, m=0,....n

r>1i=1

This solution for the simplest coupled case (whes 1):

3 3 1
2U40yy — (u()t — 3UQUOx — Zu0xxx>x =0 (5.13)
Ulponx — Y1y + 3M1yy + Buguie = 0.

takes withag = a1 = 1 the form

1+ eXp(Zrzl(“E) - v6)x,)
70 . _
() = | otz on) + oy
exp (%1 (th — vh + uf — v)x:)

Of course in the contest of the single equati¢hd 3) we can view the indeterminates
X4, X5, . .. @S parameters in the expression of the solution, which will explicitly depend only
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from the first three ones. Therefore explicitly:

-2
uo(x, y, 1) = 3(uo — vo) (COSh(%(uo —vo)x + (ud — vd)y + W3 — v + Vo))
-1
ua(x, y.1) = § (cosh(uo — vo)x + (wf — v)y + (e — vt + y0) )
% {e—l/2((u0—vo)x+(u0—vo)y+(u0—vo)t+yo) (5.14)
2 (o—u1)(vo—v1) )t/ vo)x+(u0—UO)Y+(llo—vo)l‘+)/o)}

(uo—v1)(vo—u1)
« el/ 21— vD)x+ (3= v y+ud—vd)t+y1)

wherey; with i = 0, 1 are arbitrary constants.

5.2. Coupled KdV and Boussinesq hierarchies

Similarly we may construct a generalization of the KdV hierarchy (i.e., coupled KdV
hierarchies) by considering the principal “basic” representation of the polynomial Lie
algebraﬁ(z[(”)) From what done in Sectiod we consider theﬁ(s[(z”))—module V=
®'j_oC(x1, x3, x5, .. .) given by the formulas

Hf = A5, HY = jaa, jeNodd x—=0,1,...,n
o= Ak 2 3AG = = X jenoa jx; A5 k=0.1, .. (5.15)
Ak(Z)Zz(F"(Z)—l), k=0,1,...,n
where

Hyjpq = (Xg —1xX8,), A5 = —1/(Hy),  Abjq =(Xg —1XE,)

with

«_ (01 k ¢« _ (00 k r_ (1 0 k
xo,_(oo ot xt,=(g)eM  Hi=(,_ )®*

and finally

. -J 9
r*(z)= | exp2 Z x; exp—2 Z Z—— Ak
jeNOdd jeNod

Then the polynomial Hirota bilinear equation are given by

QZ(U ®(C(n)()\) U) = UV ®(C(n)()\) v,
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whereu € C which is equivalent to the following hierarchy of bilinear equations:

k
2 2
> D0 8i(y1.0.4y3...)S; (—11)1,0,—303,...> -8 > jyDj

p=0 \j>0 jeNodd

x |exp > yiDj | pu-p =0, k=0,....n (5.16)

jENOdd

Reasoning as in the previous case of the coupled KP equations we have that the first non
trivial bilinear equations in the hierarchy are:

k
> (-4D1D3+ DY)ty =0, k=0,....n.
p=0

n2
These equations, by imposing the variables’ transformatipa: 2% u; = E—O i =
1,...,n, become

3 1
(uor — ZUOUOx — ZMO)cxx)x =0

Ukxxx — Hgxr + Buoupyx + (Z];;l 2’/‘jx"t(k—j)t + 2sz,‘lfi(k—j)x (5_17)
— OUQU jx U (k— j)x — 2U jrxxU (k— j)x—3U jxxl(k— j)xx—2U jxU(k— j)xxx) = O,
k=1,...,n.

which are generalizations of the coupled equation (14B]jnIn particular forn = 1 we
have

3 1
Uor — UOUOx — ZUOxxx = 0 (5.18)
BuoUy + Ulrxxy — A1y = 0.

This latter equations make the contact with the literaf8fand[20] (more precisely setting
u = ug, v = u1, and rescaling the time— —4r one obtains equations (2) [#0]). Further
is worth to note that by taking the derivative with respect @f the second equation and
puttingvg = ug andv1 = u1,, equationg5.18)become

vor = %UOUOX + %UOXXX

vy = %lexx + %vole + %vova
These equations are bihamiltonian with respect the two Poisson t¢hdsjrs

Pl = %axxx + 2v00x +vox O
0 —20;

p 0 %axxx + 2000, + vox
2 =
%axxx + 2v00x + vox 2010y + v1x



444 P. Casati, G. Ortenzi / Journal of Geometry and Physics 56 (2006) 418—449

namely

1 1
v —50V 5V
V1r —gVLx — zV0V1 —3v0

Similarly they can be also written in the Lax for%é = [L, B] where

Oyx + Vo 0
L =
v1 Oxx + V0

3 3
—Oxxx — 2V0x — Qvoax 0
B= 3 3 3 3 :
—ZVLx — zvlax —Oxxx — 2V0x — jvoax

Moreover analogous changes of variables lead to the Lax pairs for the other hierarchies
arising from the Lie algebraZ%(s[,((")).

Actually, as in the standard case, these hierarchy can be recovered from the polynomial
KP (5.8) by performing a reduction procedure, which amounts to eliminate the dependence
from the “even” variables,; j € N of the Fock space. This in turn corresponds to restrict
the representation gﬂ(o’})) onto its subalgebraﬁ(gl(z’l)), giving Lie algebraic explanation of
what done in the recent literatuj®4]. Therefore the soliton solutions for the coupled KdV
hierarchies can be recovered from those written for the coupled KP equggit8erasing
the even variables. In the particular case whereas? this reduction method applied to
(5.14)leads to the following solutions:

uo(x, y, 1) = 3(uo — vo) (COSh(%(uo —vo)x + (ud — v + Vo)) -

1 1 3.3 -1

ua(x, v,1) = § (cosh( 3o — vor + (43 = vd)r + ) )
% {e—1/2((uo—vo)x+(u3—vg)z+yo) (5.19)
-2 (uo—u1)(vo—v1) 1/2((uo—vo)x-+(u3—vg)r-+0) }

(uo—v1)(vo—u1)
x el/2((urvl)er(Mi*vrf)tJer)

wherey; with i = 0, 1 are still arbitrary constants.

In the same way we can recovered from the coupled KP hierarchy the “coupled Boussi-
nesq” hierarchy by erasing all the variableg with j € N, which again corresponds to
restrict our representation to the Lie algeﬁ(a[(g”)). In this case the first non trivial bilinear
Hirota equations are:

n
(D1+3D3) | Y tptap| =0. k=0.....n.
p=0
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In particular whem = 1 puttingup = 2(log(zo)).x and as usual; = % we get

3uon + Uoxxxx + 614(2)x + 6uguoyy =0
3u1y + Uirxxx + Ouoty =0

wherex = x1,t = x2. The multi-soliton solutions of these equation can obviously recovered
from the solutiong5.12) by erasing the variabless;.

5.3. Coupled BKP hierarchies and their first reductions

The construction presented above can be extended to simple Lie algebras, which are
not of typeA. In particular we would like to finish the chapter by outlining briefly the
case of the Lie algebras of tyfe In order to construct the bilinear Hirota equations for
the polynomial BKP hierarchy, we have to consider the polynomial Clifford algebgg CL
defined as Clp ® C™(1). As in the A case it can be seen as an algebra of operators on
a particular space. Lét be the irreducible Verma module with highest weight ve¢or

for the usual Clifford Lie algebra Ci (i.e. CL'Y). Let us consider ov® = @,V
Vi >~ V,Vi=O,...,ntheoperatorﬁl(k),ieZ,k:O,...,n:

¢l(j)(v07 ey Un) = (07 IR ] 07 ¢iUO9 AR ] (bivn—j)
L
J

whereg;v; is the usual action of the elements@©L 3 on V. From the tensorial definition
of CL%) the relation among the elements of the algebra becomes in this polynomial case:

W@ () D)0 _ [ (FL1Y8 g ATth i j+k<n
biY e = {o otherwise

Using this action we can define fare Z°%the neutral bosonic fields:
1 g (k=1) 4(0)
ko j+1  (k—
B = 26+ 1) ZZ(—l)j ¢ TP,
=0 j>1
which generate the associated generalized Heisenberg algebra

(BB = $p8p—qAMTE it b+ k<n

prrq 0 otherwise
Now we can define a generalized boson—fermion correspondence o?ty@é: v
B"™ = @!'_,By whereBy = C[x1, x3, xs, ... ; q]/(¢?> — 3) for all k, which nothing else that
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the direct sum ofi + 1 copies of the usual isomorphidi0] o5 and therefore

o%©,...,0 .,]0),0...,0)=(0,....0 ,1,0...,0)
SN——%—-1 SN——%—-1

ag’)¢>’5(|0),0...,0)=(O,...,Ok_l,q,o...,O)
and forp e Nodd
n n a n n
()IB ( ()) 1_ ax , 053),3]1],(0( )) 1 fAkpxp

p

Then if we introduce the neutral fermionic fields:

AOEDIE

i€Z

we can show (as in the caseaﬁi)) that

- 8
jeNodd jeNodd ] a

Our aim is now to construct a fermionic representation of the infinite dimensional poly-
nomial Lie algebrao{) = s0,, ® C™ (1) (and actually 0b®) = bo, ® (C(”)(A)) spanned

by the elementss = (—1)/E}; — (-1YEX ; _;, where theEk] are the basis ofI") previ-
ously conS|dered Mimicking the same proofldfeorem 4.2ne can prove indeed that the
following formula:

k
_ k1) ()
()k+g?,¢1

defines a representationm(o'é), which can be linearly extended to a representatio&rﬁ@f
by putting

H(FK) = ﬁ25{=0¢§k4)¢@j ifi jori=j>0
T T 0, S iz j<0

k+1 £<4I=0%i —-j 2 1= <
Ib(ck)ZAk, k=0,~-.,n.

This representation turns out to be the direct sum of two representation defined respectively
on VO") (the even elementg) and onV. (”) (the odd ones). Moreover it can be checked
that the maprg’) : Vé”) >~ @ _oBro (WhereBko = C(x1, x2, x3, ...) for all k) is aso(")
isomorphism between the representajigg and the following vertex operator construction
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of the same algebra such that:

- 22/22
> iz, T Zm( i(z1,22) — 1)
i,JeZ
where
k k o sz—zgj G]
Is(z1, 22) = (k + 1) A" exp Z xj(z]+23) | exp| -2 Z Lt
jeNodd jeNodd J J

In order to construct the polynomial nBKP hierarchy of Hirota bilinear equation we use the
operator

n k

27 Z Z( 1)j¢§-kil) ®cwm(z) ¢(_l)j

k=0 1=0 jeZ

commuting with the action of the algebisf). The equation oV @c () V)

1
28 (r ®cwpy 1) = Zk +1Z( 164 () ®cmpy #9(2), T € Vo

transferred tad}_, Byo gives rise to the coupled BKP hierarchy

Z > 5,(2y,)5,< : ,-) exp > »Ds | tpr—p. k=0,....n. (5.20)

p=0 jeNedd seNodd

For example the first non trivial ones (which therefore can be viewed as generalization to
the B case of those written by Hirota) are the coefficientsgin the expansion of5.20)

k
Z(Dg —5D1D3 — SD% + D1D5)‘L'p‘L’k,p =0, k=0,...,n.
p=0

Performing the change of variableg = 23'%2’0) andwi = % i=1,...,nthese equa-
tions become

(waxxxx + 30wox woxxx — 5w0xxy - 30w0xw0y + GOng + 9w0l)x - 5w0yy =0
_5wlyy + 180wo, wicx + w1y + 30worrxwiex + 30W0x Wixxrx + Wirxxrxx
— 30wox w1ry — 30woywixy — SwWirexy =0

wherex = x1, y = x3, t = x5. Once again from these equations by performing opportune
reduction process (namely eliminating the variahig,1);) we can obtain the coupled
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B,, soliton equations. In particular fet = 1 we get the coupled Kotera—Sawada hierarchy
[22], whose first non trivial equation when= 1 wo = 2(log(zp)).x andwi = % is

Qwor + Woxxrxx + 3W0x Woxxx + SWoWoxxx + 18011)(2)wa =0
180wow1cx + w1y + 30worx Wiy + 30WEWLrxxx + Wirxxxxy =0

wherex = x1 andr = xs.

Of course exactly as in the non coupled case these hierarchies can be also obtained by
applying our construction to the Lie “polynomial” algebraﬁﬁ))("). While form = 2 one
obtains the coupleft; hierarchies, which again when= 1 has as first non trivial equation:

(Worxxxx + 30WorWoxxy — Sworxyr — 30worwor + GOU-)SX)X — Swoy =0
—5Sw1 + 180woywicx + 30WorWix + 30Wor Wirxxy + Wiixxrrx
— 30wox w1y — 30wo W1y — SWicxy =0

wherex = x; andr = x3. Finally, the vertex operator construction provides (as in the case
of the hierarchies of typ#&) the multi-soliton solutions for all the hierarchies written above.
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